留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆钢管自应力钢渣增强混凝土柱的受力机制及承载力计算

方圆 于峰 张扬 徐琳 王旭良

方圆, 于峰, 张扬, 等. 圆钢管自应力钢渣增强混凝土柱的受力机制及承载力计算[J]. 复合材料学报, 2020, 37(5): 1211-1220. doi: 10.13801/j.cnki.fhclxb.20190916.001
引用本文: 方圆, 于峰, 张扬, 等. 圆钢管自应力钢渣增强混凝土柱的受力机制及承载力计算[J]. 复合材料学报, 2020, 37(5): 1211-1220. doi: 10.13801/j.cnki.fhclxb.20190916.001
FANG Yuan, YU Feng, ZHANG Yang, et al. Mechanical behavior and bearing capacity calculation of self-stressing steel slag aggregate reinforced concrete filled circular steel tube columns[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1211-1220. doi: 10.13801/j.cnki.fhclxb.20190916.001
Citation: FANG Yuan, YU Feng, ZHANG Yang, et al. Mechanical behavior and bearing capacity calculation of self-stressing steel slag aggregate reinforced concrete filled circular steel tube columns[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1211-1220. doi: 10.13801/j.cnki.fhclxb.20190916.001

圆钢管自应力钢渣增强混凝土柱的受力机制及承载力计算

doi: 10.13801/j.cnki.fhclxb.20190916.001
基金项目: 国家自然科学基金(51608003;51578001;51878002);安徽省教育厅自然科学基金重大项目(KJ2015ZD10);安徽省重点研究与开发计划(1704a0802131);安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016072);住房和城乡建设部科学技术项目(2012-K2-7);安徽省自然科学基金(1208085QE88)
详细信息
    通讯作者:

    于峰,博士,教授,博士生导师,研究方向为新型组合结构、绿色建筑材料、固体废弃物资源化利用、纤维增强复合材料在土木工程中的应用 E-mail:yufeng2007@126.com

  • 中图分类号: TU398.9

Mechanical behavior and bearing capacity calculation of self-stressing steel slag aggregate reinforced concrete filled circular steel tube columns

  • 摘要: 为研究圆钢管自应力钢渣增强混凝土(钢渣/混凝土@圆钢管)柱的受力机制,设计了8根钢渣/混凝土@圆钢管柱进行轴心受压加载试验,其中短柱试件6个,中长柱试件2个。试验考虑钢渣/混凝土膨胀率、径厚比和长径比共3个变化参数。观察试件的受力破坏全过程,获取应力-应变曲线、峰值应力等重要参数,分析各变化参数对钢渣/混凝土@圆钢管轴压柱受力性能的影响。结果表明:钢渣/混凝土@圆钢管轴压短柱的破坏形态表现为中部鼓曲状剪压破坏,而钢渣/混凝土@圆钢管轴压中长柱则呈弯曲屈曲破坏;各试件受力破坏全过程曲线均经历峰值点、下降段、缓慢上升段等历程,与普通钢渣/混凝土相比,各试件的峰值应变和峰值应力明显提高,且钢渣/混凝土@圆钢管轴压短柱试件较钢渣/混凝土@圆钢管轴压中长柱试件提高更为显著。根据极限平衡条件和全过程分析,提出钢渣/混凝土@圆钢管柱承载力计算公式。在试验研究基础上,建立钢渣/混凝土@圆钢管柱的应力-应变关系模型,理论计算结果与试验实测数据吻合较好。研究成果可为钢渣/混凝土@圆钢管柱的进一步研究和工程应用提供参考。

     

  • 图  1  钢渣/混凝土@圆钢管柱的破坏形态

    Figure  1.  Failure modes of steel slag aggregate/concrete@circular steel tube columns

    图  2  钢渣/混凝土@圆钢管柱的应力-应变曲线

    Figure  2.  Stress-strain curves of self-stressing steel slag aggregate/concrete@circular steel tube columns

    图  3  钢渣/混凝土@圆钢管柱受力简图

    Figure  3.  Force diagram of steel slag aggregate/concrete@circular steel tube column

    图  4  钢渣/混凝土@圆钢管柱承载力稳定系数${\varphi _{\rm{l}}}$与长径比${L / D}$的关系

    Figure  4.  Relationship between load capacity stability ${\varphi _{\rm{l}}}$ and length-diameter ratio ${L / D}$ of self-stressing steel slag aggregate/concrete@circular steel tube column

    图  5  钢渣/混凝土@圆钢管短柱极限压应变${\varepsilon _{{\rm{au}}}}$与套箍系数$\theta $的关系

    Figure  5.  Relationship between ultimate compressive strain ${\varepsilon _{{\rm{au}}}}$ and confinement coefficient $\theta $ of self-stressing steel slag aggregate/concrete@circular steel tube short column

    图  6  钢渣/混凝土@圆钢管柱应变稳定系数${\varphi _{\rm{s}}}$与长径比${L / D}$的关系

    Figure  6.  Relationship between strain stability factor ${\varphi _{\rm{s}}}$ and length-diameter ratio ${L / D}$ of self-stressing steel slag aggregate/concrete@circular steel tube column

    图  7  钢渣/混凝土@圆钢管柱实测应力-应变曲线与计算应力-应变曲线的比较

    Figure  7.  Comparisons between measured stress-strain curves and calculated stress-strain curves of self-stressing steel slag aggregate/concrete@circular steel tube column

    表  1  钢渣/混凝土组分含量及实测强度

    Table  1.   Proportion and measured strength of steel slag/concrete

    Particle size of
    steel slag/mm
    Sand
    ratio/%
    Material usage/(kg.m−3)Cube compressive strength/MPaExpansion rate/10−4
    Tap
    water
    CementCoarse aggregate
    (gravel)
    Fine aggregate
    (sand)
    Fine aggregate
    (steel slag)
    1.18–2.360201365961062134.29−3.5
    0.15–0.3(75%)+
    0.3–0.6(25%)
    0201365961062121.85 2.8
    下载: 导出CSV

    表  2  圆钢管自应力钢渣增强混凝土(钢渣/混凝土@圆钢管)柱试件相关参数及实测强度

    Table  2.   Parameters and test strength of steel slag aggregate reinforced concrete filled circular steel tube columns (steel slag aggregate/ concrete@ circular steel tube) column samples

    SamplePct/10−4L/mmD/mmts/mmL/Dfsy/MPafsu/MPafco/MPaθNae/kNσmax/MPaεamaxεcmax
    12.85001402.083.5717631217.500.5862540.6−0.01250.0082
    2−3.55001402.083.5717631227.440.4873747.9−0.01190.0069
    32.85001403.633.5723329617.501.231 01666.0−0.01470.0091
    4−3.55001403.633.5723329627.441.141 14774.5−0.01340.0079
    52.85001404.223.5723630117.501.421 12372.9−0.01580.0103
    6−3.55001404.223.5723630127.441.361 22379.4−0.01510.0095
    72.81 0001403.637.1423329617.501.2385855.7−0.01230.0082
    82.81 5001403.6310.7123329617.501.2379951.9−0.01010.0070
    Notes: Pct—Expansion rate of steel slag aggregate concrete; D,ts—Outer diameter and thickness of steel tube, respectively; L—Height of specimen; fsy, fsu—Yield and ultimate strength of steel tube, respectively; fco—Compressive strength of steel slag aggregate concrete; Nae—Measured ultimate strength of column; θ—Confinement coefficient, $\theta {\rm{ = }}\displaystyle\frac{{{A_{\rm{s}}}{f_{{\rm{sy}}}}}}{{\mu {f_{{\rm{co}}}}{A_{\rm{c}}}}}$; σmax—Ultimate stress of column; εamax—Ultimate axial strain of column; εcmax—Ultimate circumferential strain of column.
    下载: 导出CSV

    表  3  钢渣/混凝土@圆钢管轴压短柱承载力试验值与计算值比较

    Table  3.   Comparison of calculated values and test data of self-stressing steel slag aggregate/concrete@circular steel tube short columns under axial load

    SpecimenD/tsL/DPct/10–4Na/kNNae/kNNa/NaeNa/Nae
    AveragevalueStandard deviationVariation coefficient
    167.303.57 2.8 590.56250.94480.9530.0540.0567
    267.303.57−3.5 650.47370.8825
    338.563.57 2.81 018.41 0161.0024
    438.563.57−3.51 042.81 1470.9092
    533.173.57 2.81 151.31 1231.0252
    633.173.57−3.51 164.81 2230.9524
    下载: 导出CSV

    表  4  钢渣/混凝土@圆钢管轴压中长柱承载力试验值与计算值比较

    Table  4.   Comparison of calculated values and test data of self-stressing steel slag aggregate/concrete@circular steel tube intermediate length columns under axial load

    SpecimenD/tsD/LPct/10−4Nal/kNNae/kNNal/kN${{{N_{{\rm{al}}}}}}/{{{N_{{\rm{ae}}}}}}$${{{{N'}_{{\rm{al}}}}}}/{{{N_{{\rm{ae}}}}}}$
    738.56 7.142.88068588550.9400.997
    838.5610.712.87857997940.9820.994
    下载: 导出CSV

    表  5  钢渣/混凝土@圆钢管轴压柱极限压应变计算结果与试验结果比较

    Table  5.   Comparison of calculated values and test data of ultimate compressive strain of self-stressing steel slag aggregate/concrete@circular steel tube columns under axial load

    SpecimenL/DPct/10−4$\varepsilon _{\rm ae}$$\varepsilon _{{\rm{au}}}^{\rm{c}}$$\varepsilon _{{\rm{al}}}^{\rm{c}}$${{\varepsilon _{{\rm{au}}}^{\rm{c}}}}/{{{\varepsilon _{{\rm{ae}}}}}}$${{\varepsilon _{{\rm{al}}}^{\rm{c}}}}/{{{\varepsilon _{{\rm{ae}}}}}}$
    1 3.57 2.80.01250.01301.0402
    2 3.57−3.50.01190.01261.0588
    3 3.57 2.80.01470.01250.8503
    4 3.57−3.50.01340.01180.8806
    5 3.57 2.80.01580.01280.810 1
    6 3.57−3.50.01450.01200.8276
    7 7.14 2.80.01230.01090.8862
    810.71 2.80.01010.00950.9406
    Notes: $\varepsilon _{{\rm{au}}}^{\rm{c}}$—Calculated value of ultimate compressive strain of short columns; $\varepsilon _{{\rm{al}}}^{\rm{c}}$—Calculated value of ultimate compressive strain of intermediate length columns; ${\varepsilon _{{\rm{ae}}}}$—Test data of ultimate compressive strain of columns.
    下载: 导出CSV
  • [1] JU Y, LIU H B, LIU J H, et al. Investigation on thermophysical properties of reactive powder concrete[J]. Technological Sciences,2011,54(12):3382-3403. doi: 10.1007/s11431-011-4536-4
    [2] 朱跃刚, 陆明弟, 程勇, 等. 我国钢渣资源化利用的研究进展[J]. 中国废钢铁, 2007(4):25-29.

    ZHU Y G, LU M D, CHENG Y, et al. Research progress on resource utilization of steel slag in China[J]. Iron & Steel Scrap of China,2007(4):25-29(in Chinese).
    [3] 赵计辉, 阎培渝. 钢渣的体积安定性问题及稳定化处理的国内研究进展[J]. 硅酸盐通报, 2017, 36(2):477-483.

    ZHAO J H, YAN P Y. Volume stability and stabilization treatment of steel slag in China[J]. Bulletin of the Chinese Ceramic Society,2017,36(2):477-483(in Chinese).
    [4] JUCKES L M. The volume stability of modern steelmaking slags[J]. Mineral Processing and Extractive Metallurgy,2003,112(3):177-197.
    [5] QASRAWI H, SHALABI F, ASI I. Use of low CaO unprocessed steel slag in concrete as fine aggregate[J]. Construction and Building Materials,2009,23(2):1118-1125. doi: 10.1016/j.conbuildmat.2008.06.003
    [6] WANG G, WANG Y, GAO Z. Use of steel slag as a granular material: Volume expansion prediction and usability criteria[J]. Journal of Hazardous Materials,2010,184(1-3):555-560. doi: 10.1016/j.jhazmat.2010.08.071
    [7] 张同生, 刘福田, 王建伟, 等. 钢渣安定性与活性激发的研究进展[J]. 硅酸盐通报, 2007, 26(5):980-984. doi: 10.3969/j.issn.1001-1625.2007.05.028

    ZHANG T S, LIU F T, WANG J W, et al. Recent development of steel slag stability and activating activity[J]. Bulletin of the Chinese Ceramic Society,2007,26(5):980-984(in Chinese). doi: 10.3969/j.issn.1001-1625.2007.05.028
    [8] 高博, 李灿华. 钢渣膨胀机理及抑制方法的研究[J]. 中国废钢铁, 2011(2):28-31.

    GAO B, LI C H. Study on the expansion mechanism and inhibition method of steel slag[J]. Iron & Steel Scrap of China,2011(2):28-31(in Chinese).
    [9] LIU H, WANG Y X, HE M H, et al. Strength and ductility performance of concrete-filled steel tubular columns after long-term service loading[J]. Engineering Structures,2015,100:308-325. doi: 10.1016/j.engstruct.2015.06.024
    [10] LAI M H, HO J C M. A theoretical axial stress-strain model for circular concrete filled-steel-tube columns[J]. Engineering Structures,2016,125:124-143. doi: 10.1016/j.engstruct.2016.06.048
    [11] 吴波, 刘伟, 刘琼祥, 等. 钢管再生混合短柱的轴压性能试验[J]. 土木工程学报, 2010, 43(2):32-38.

    WU B, LIU W, LIU Q X, et al. Experimental study on the behavior of recycled-concrete-segment/lump filled steel tubular stub columns subjected to concentrically axial load[J]. China Civil Engineering Journal,2010,43(2):32-38(in Chinese).
    [12] 肖建庄, 杨洁, 黄一杰, 等. 钢管约束再生混凝土轴压试验研究[J]. 建筑结构学报, 2011, 32(6):92-98.

    XIAO J Z, YANG J, HUANG Y J, et al. Experimental study on recycled concrete confined by steel tube un-der axial compression[J]. Journal of Building Structures,2011,32(6):92-98(in Chinese).
    [13] WANG Y Y, CHEN J, GENG Y. Testing and analysis of axially loaded normal strength recycled aggregate concrete filled steel tubular stub columns[J]. Engineering Structures,2015,86:192-212. doi: 10.1016/j.engstruct.2015.01.007
    [14] 陈宗平, 柯晓军, 薛建阳, 等. 钢管约束再生混凝土的受力机理及强度计算[J]. 土木工程学报, 2013, 46(2):70-77.

    CHEN Z P, KE X J, XUE J Y, et al. Mechanical performance and ultimate bearing capacity calculation of steel tube confined recycled coarse aggregate concrete[J]. China Civil Engineering Journal,2013,46(2):70-77(in Chinese).
    [15] BEGGAS D, ZEGHICHE J. The use of slag stone concrete to improve the thermal performance of light steel buildings[J]. Sustainable Cities and Society,2013,6:22-26. doi: 10.1016/j.scs.2012.07.004
    [16] FERHOUNE N. Experimental behavior of cold-formed steel welded tube filled with concrete made of crushed crystallized slag subjected to eccentric load[J]. Thin-Walled Structures,2014,80:159-166. doi: 10.1016/j.tws.2014.02.014
    [17] 王旭良. 基于可控膨胀率钢渣混凝土基本性能研究[D]. 马鞍山: 安徽工业大学, 2014.

    WANG X L. Basic performance of the steel-slag concrete based on controllable expansion rate[D]. Ma’anshan: Anhui University of Technology, 2014 (in Chinese).
    [18] 于峰, 王旭良, 徐琳, 等. 基于可控膨胀率全钢渣砂混凝土基本性能研究[J]. 硅酸盐通报, 2015, 34(6):1520-1525.

    YU F, WANG X L, XU L, et al. Basic performance of the whole steel-slag concrete based on controllable expansion rate[J]. Bulletin of the Chinese Ceramic Society,2015,34(6):1520-1525(in Chinese).
    [19] 吕杨. 钢渣中f-CaO膨胀性研究[D]. 北京: 北京化工大学, 2017.

    LV Y. Study on the expansibility of f-CaO in steel slag[D]. Beijing: Beijing University of Chemical Technology, 2017(in Chinese).
    [20] 侯新凯, 徐德龙, 薛博, 等. 钢渣引起水泥体积安定性问题的探讨[J]. 建筑材料学报, 2012, 15(5):588-595. doi: 10.3969/j.issn.1007-9629.2012.05.002

    HOU X K, XU D L, XUE B, et al. Study on volume stability problems of cement caused by steel slag[J]. Journal of Building Materials,2012,15(5):588-595(in Chinese). doi: 10.3969/j.issn.1007-9629.2012.05.002
    [21] 何益斌, 肖阿林, 黄频. 钢骨-钢管混凝土轴压中长柱极限承载力研究[J]. 建筑结构, 2009, 39(6):29-33.

    HE Y B, XIAO A L, HUANG P. Study on the ultimate bearing capacity of axially loaded steel tubular slender columns filled with steel-reinforced concrete[J]. Building Structures,2009,39(6):29-33(in Chinese).
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  714
  • HTML全文浏览量:  133
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 录用日期:  2019-08-25
  • 网络出版日期:  2019-09-17
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回