留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维-纳米石墨片网络体导热增强石蜡相变储能复合材料的制备及表征

李果 欧阳婷 蒋朝 陈云博

李果, 欧阳婷, 蒋朝, 等. 碳纤维-纳米石墨片网络体导热增强石蜡相变储能复合材料的制备及表征[J]. 复合材料学报, 2020, 37(5): 1130-1137. doi: 10.13801/j.cnki.fhclxb.20190911.002
引用本文: 李果, 欧阳婷, 蒋朝, 等. 碳纤维-纳米石墨片网络体导热增强石蜡相变储能复合材料的制备及表征[J]. 复合材料学报, 2020, 37(5): 1130-1137. doi: 10.13801/j.cnki.fhclxb.20190911.002
LI Guo, OUYANG Ting, JIANG Zhao, et al. Preparation and characterization of paraffin phase change composites reinforced by carbon fiber-graphite nanoplatelets network[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1130-1137. doi: 10.13801/j.cnki.fhclxb.20190911.002
Citation: LI Guo, OUYANG Ting, JIANG Zhao, et al. Preparation and characterization of paraffin phase change composites reinforced by carbon fiber-graphite nanoplatelets network[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1130-1137. doi: 10.13801/j.cnki.fhclxb.20190911.002

碳纤维-纳米石墨片网络体导热增强石蜡相变储能复合材料的制备及表征

doi: 10.13801/j.cnki.fhclxb.20190911.002
基金项目: 湖南省自然科学基金 (2018JJ3044 )
详细信息
    通讯作者:

    欧阳婷,博士,副教授,硕士生导师,研究方向为炭纤维、中间相沥青、相变储能、高导热复合材料 E-mail: oyt@hnu.edu.cn

  • 中图分类号: TB332

Preparation and characterization of paraffin phase change composites reinforced by carbon fiber-graphite nanoplatelets network

  • 摘要: 以石蜡为代表的固-液相变储能材料存在导热率低和热稳定性差两大问题,为了提高其导热性能,以酚醛树脂为碳质黏结剂前驱体,采用浆料成型法制备碳纤维-纳米石墨片(CF-GNP)复合网络体,并通过真空浸渍石蜡,制得CF-GNP/石蜡复合材料。表征和分析了CF和GNP含量对CF-GNP网络体微观形貌和CF-GNP/石蜡相变储能复合材料导热效率及热稳定性的影响。结果表明,CF-GNP/石蜡复合材料的导热效率较纯石蜡大幅增加。CF-GNP网络体中CF含量越低,GNP导热增强效应越明显。CF-GNP网络体中CF和GNP含量分别为50wt%、10wt%时,CF-GNP/石蜡复合材料的升温时间较CF含量为50wt%的CF/石蜡复合材料缩短了39.9%,当CF含量分别为70wt%和85wt%时,分别缩短了24.5%和9.4%。40次热循环稳定性测试表明,CF-GNP/石蜡复合材料具有良好热稳定性。

     

  • 图  1  碳纤维-纳米石墨片(CF-GNP)/石蜡相变复合材料的制备流程

    Figure  1.  Preparation process of carbon fiber-graphite nanoplatelets (CF-GNP)/paraffin phase change composites

    图  2  EG和GNP的XRD(a)、Raman(b)和FTIR(c)图谱

    Figure  2.  XRD patterns(a), Raman spectra(b) and FTIR spectra (c) of EG and GNP

    图  3  EG(a)和GNP(b)的SEM图像及 GNP的TEM图像(c)

    Figure  3.  SEM images of EG(a) and GNP(b) and TEM image of GNP(c)

    图  4  CF-GNP网络体的SEM图像(未添加GNP,CF含量分别为50wt%(a), 70wt%(b), 85wt%(c)及对应的黏结点放大图(插图);GNP添加量为10wt%,CF含量分别为50wt%(d), 70wt%(e), 85wt%(f))

    Figure  4.  SEM images of CF-GNP network (Without GNP, CF content is 50wt%(a), 70wt%(b), 85wt%(c) respectively; With 10wt% GNP, CF content is 50wt%(d), 70wt%(e), 85wt%(f) respectively)

    图  5  CF-GNP网络体黏结点处的SEM图像(GNP含量为1wt%,CF含量分别为50wt%(a), 70wt%(b), 85wt%(c)及黏结点放大图((a1), (b1), (c1));GNP含量为10wt%,CF含量分别为50wt%(d), 70wt%(e), 85wt%(f)及黏结点放大图((d1), (e1), (f1)))

    Figure  5.  SEM images of carbon bonded CF-GNP network (With 1wt% GNP, CF content is 50wt%(a),70wt%(b), 85wt%(c) and their enlargements((a1), (b1), (c1)) respectively; With 10wt% GNP, CF content is 50wt%(d),70wt%(e), 85wt%(f) and their enlargements((d1), (e1), (f1)) respectively)

    图  6  CF-GNP/石蜡相变复合材料储热((a)~(c))和放热((d)~(f))曲线

    Figure  6.  Charging((a)–(c)) and discharging((d)–(f)) curves of CF-GNP/paraffin phase change composites

    图  7  CF-GNP网络体导热模型:(a)CF-酚醛碳-CF; (b)CF-酚醛碳-GNP-CF; (c)GNP-酚醛碳-GNP; (d)碳纤维网络;(e)复合网络

    Figure  7.  Heat conduction transfer model of CF-GNP network:(a) CF-PR-CF; (b) CF-PR-GNP-CF; (c) GNP-PR-GNP;(d) CF network; (e) Hybrid composite network

    图  8  CF-GNP/石蜡相变复合材料冷热循环的质量变化曲线

    Figure  8.  Mass change curves of CF-GNP/paraffin phase change composites during thermal cycle

    图  9  CF-GNP/石蜡相变复合材料的DSC曲线

    Figure  9.  DSC curves of CF-GNP/paraffin phase change composites

    表  1  CF-GNP网络体成分含量

    Table  1.   Composition of CF-GNP network

    SampleMass fraction of CF/wt%Mass fraction of GNP/wt%Mass fraction of PR/wt%
    85-1085105
    85-185114
    85-085015
    70-10701020
    70-170129
    70-070030
    50-10501040
    50-150149
    50-050050
    Note: PR—Phenolic resin.
    下载: 导出CSV
  • [1] IBRAHIM N I, AL-SULAIMAN F A, RAHMAN S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review[J]. Renewable and Sustainable Energy Reviews,2017,74:26-50. doi: 10.1016/j.rser.2017.01.169
    [2] ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy,2016,165:472-510. doi: 10.1016/j.apenergy.2015.12.043
    [3] AGYENIM F, HEWITT N, EAMES P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews,2010,14(2):615-628. doi: 10.1016/j.rser.2009.10.015
    [4] XIANG J L, DRZAL L T. Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material[J]. Solar Energy Materials & Solar Cells,2011,95(7):1811-1818.
    [5] FAN L W, FANG X, WANG X, et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy,2013,110:163-172.
    [6] CAI Y B, GAO C T, ZHANG T, et al. Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats[J]. Renewable Energy,2013,57:163-170. doi: 10.1016/j.renene.2013.01.044
    [7] YAVARI F, FARD H R, PASHAYI K, et al. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives[J]. The Journal of Physical Chemistry C,2011,115(17):8753-8758.
    [8] TENG T P, CHENG C M, CHENG C P. Performance assessment of heat storage by phase change materials containing MWCNTs and graphite[J]. Applied Thermal Engineering,2013,50(1):637-644. doi: 10.1016/j.applthermaleng.2012.07.002
    [9] FUKAI J, HAMADA Y, MOROZUMI Y, et al. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: Experiments and modeling[J]. International Journal of Heat & Mass Transfer,2003,46(23):4513-4525.
    [10] 郭玺, 曹金珍, 王佳敏. 聚乙二醇改性相变微胶囊-木粉/高密度聚乙烯复合材料的制备与热性能[J]. 复合材料学报, 2017, 34(6):1185-1190.

    GUO X, CAO J Z, WANG J M. Preparation and thermal properties of WF/HDPE composites filled with microcapsules modified by polyethylene glycol[J]. Acta Materiae Compositae Sinica,2017,34(6):1185-1190(in Chinese).
    [11] JIN Z G, WANG Y D, LIU J G, et al. Synthesis and properties of paraffin capsules as phase change materials[J]. Polymer,2008,49(12):2903-2910. doi: 10.1016/j.polymer.2008.04.030
    [12] JAMEKHORSHID A, SADRAMELI S M, BAHRAMIAN A R. Process optimization and modeling of microencapsulated phase change material using response surface methodology[J]. Applied Thermal Engineering,2014,70(1):183-189. doi: 10.1016/j.applthermaleng.2014.05.011
    [13] 陆少锋, 邢建伟, 吴钦, 等. 界面聚合聚脲/聚氨酯双层微胶囊相变材料的研制与性能[J]. 高分子材料科学与工程, 2011, 27(1):17-19.

    LU S F, XING J W, WU Q, et al. Development and properties of Interfacial polyurea/polyurethane double layer microencapsulated phase change materials[J]. Polymer Materials Science & Engineering,2011,27(1):17-19(in Chinese).
    [14] SINGER L S. Carbon fibres from mesophase pitch[J]. Fuel,1981,60(9):839-847. doi: 10.1016/0016-2361(81)90147-2
    [15] 詹建, 邹得球, 李乐园, 等. 高温相变石蜡-脲醛树脂微胶囊的制备及表征[J]. 复合材料学报, 2017, 34(2):284-290.

    ZHAN J, ZOU D Q, LI L Y, et al. Preparation and characterization of high temperature phase change paraffin-urea-formaldehyde resin microcapsules[J]. Acta Materiae Compositae Sinica,2017,34(2):284-290(in Chinese).
    [16] JIANG Z, OUYANG T, YANG Y, et al. Thermal conductivity enhancement of phase change materials with form-stable carbon bonded carbon fiber network[J]. Materials & Design,2018,143:177-184.
    [17] 欧阳婷, 陈云博, 蒋朝, 等. 以中间相沥青为粘结剂的低密度高导热炭纤维网络体的制备与表征[J]. 无机材料学报, 2019, 34(10):1030-1034.

    OUYANG T, CHEN Y B, JIANG Z, et al. Evaluation of low density and highly thermal conductive carbon bonded carbon fiber network with mesophase pitch as binder[J]. Journal of inorganic materials,2019,34(10):1030-1034(in Chinese).
    [18] TIWARI A. Graphene-based composite materials[J]. Dissertations & Theses-Gradworks,2011,442(2):282-286.
    [19] CHOI J Y, KIM S W, CHO K Y. Improved thermal conductivity of graphene encapsulated poly(methyl methacrylate) nanocomposite adhesives with low loading amount of graphene[J]. Composites Science and Technology,2014,94:147-154. doi: 10.1016/j.compscitech.2014.02.005
    [20] SHAHIL K M F, BALANDIN A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters,2012,12(2):861-867. doi: 10.1021/nl203906r
    [21] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters,2006,97(18):187401. doi: 10.1103/PhysRevLett.97.187401
    [22] DAS A, CHAKRABORTY B, SOOD A K. Raman spectroscopy of graphene on different substrates and influence of defects[J]. Bulletin of Materials Science,2008,31(3):579-584. doi: 10.1007/s12034-008-0090-5
    [23] MCCAUGHAN J B T. Capillarity: A lesson in the epistemology of physics[J]. Physics Education,1987,22(2):100-106. doi: 10.1088/0031-9120/22/2/005
    [24] WANG Y M, TANG B T, ZHANG S F. Single-walled carbon nanotube/phase change material composites: Sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage[J]. Advanced Functional Materials,2013,23(35):4354-4360. doi: 10.1002/adfm.201203728
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  941
  • HTML全文浏览量:  88
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 录用日期:  2019-09-02
  • 网络出版日期:  2019-09-12
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回