留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2包覆石墨烯/双马来酰亚胺复合材料的表征及性能

陈宇飞 武耘仲 代国庆 李治国 滕成君 崔巍巍

陈宇飞, 武耘仲, 代国庆, 等. SiO2包覆石墨烯/双马来酰亚胺复合材料的表征及性能[J]. 复合材料学报, 2020, 37(5): 1015-1023. doi: 10.13801/j.cnki.fhclxb.20190911.001
引用本文: 陈宇飞, 武耘仲, 代国庆, 等. SiO2包覆石墨烯/双马来酰亚胺复合材料的表征及性能[J]. 复合材料学报, 2020, 37(5): 1015-1023. doi: 10.13801/j.cnki.fhclxb.20190911.001
CHEN Yufei, WU Yunzhong, DAI Guoqing, et al. Characterization and properties of SiO2-coated graphene/bismaleimide composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1015-1023. doi: 10.13801/j.cnki.fhclxb.20190911.001
Citation: CHEN Yufei, WU Yunzhong, DAI Guoqing, et al. Characterization and properties of SiO2-coated graphene/bismaleimide composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1015-1023. doi: 10.13801/j.cnki.fhclxb.20190911.001

SiO2包覆石墨烯/双马来酰亚胺复合材料的表征及性能

doi: 10.13801/j.cnki.fhclxb.20190911.001
基金项目: 国家自然科学基金(51177030),哈尔滨创新人才专项(2015RAXXJ029)
详细信息
    通讯作者:

    陈宇飞,博士,教授,研究方向为介电复合材料、高性能航空材料结构与性能 E-mail:chenyufei@hrbust.edu.cn

  • 中图分类号: TB332

Characterization and properties of SiO2-coated graphene/bismaleimide composites

  • 摘要: 采用硅烷偶联剂乙烯基三甲氧基硅烷(VTMO)改性石墨烯(GE),利用溶胶-凝胶法在GE表面包覆SiO2微球,得到SiO2包覆改性石墨烯(SiO2@(VTMO-GE)),以二烯丙基双酚A(BBA)和双酚A双烯丙基醚(BBE)为活性稀释剂,4,4′-二氨基二苯甲烷型双马树脂(MBMI)为单体,制备MBMI-BBA-BBE(MBAE)树脂基体;同时,以SiO2@(VTMO-GE)为增强体,采用原位聚合法制备SiO2@(VTMO-GE)/MBAE复合材料。对VTMO-GE及包覆效果进行表征和分析,研究SiO2@(VTMO-GE)增强体与SiO2@(VTMO-GE)/MBAE复合材料性能之间的关系。结果表明:VTMO成功改性GE,且SiO2微球均匀包覆在VTMO-GE表面;SiO2@(VTMO-GE)提高了SiO2@(VTMO-GE)/MBAE复合材料性能。当SiO2@(VTMO-GE)掺杂量为2.0wt%时,SiO2@(VTMO-GE)/MBAE复合材料的冲击强度和弯曲强度达到最大,分别为23.0 kJ/m2和157.4 MPa,较聚合物基体分别提高了150%和58%;在频率为102~104 Hz范围内,介电常数较为平稳,约为70.0;介电损耗约为3.7×10−3,耐热性能随SiO2@(VTMO-GE)掺杂量的增加有所提高。SiO2@(VTMO-GE)/MBAE复合材料具有优异的综合性能,为其进一步应用奠定了基础。

     

  • 图  1  VTMO-GE、GE、SiO2@(VTMO-GE)和SiO2@GE的FTIR图谱

    Figure  1.  FTIR spectra of VTMO-GE, GE, SiO2@(VTMO-GE) and SiO2@GE

    图  2  SiO2微球和SiO2@(VTMO-GE)的TEM图像

    Figure  2.  TEM images of SiO2 microspheres and SiO2@(VTMO-GE)

    图  3  SiO2@(VTMO-GE)(a)和SiO2@GE(b)的SEM图像及EDS图谱

    Figure  3.  EDS spectra and SEM images of SiO2@(VTMO-GE)(a) and SiO2@GE(b)

    图  4  MBAE和SiO2@(VTMO-GE)/MBAE复合材料的SEM图像

    Figure  4.  SEM images of MBAE and SiO2@(VTMO-GE)/MBAE composites

    图  5  GE/MBAE和SiO2@(VTMO-GE)/MBAE复合材料的冲击强度和弯曲强度

    Figure  5.  Impact strength and bending strength of GE/MBAE and SiO2@(VTMO-GE)/MBAE composites

    图  6  SiO2@(VTMO-GE)/MBAE复合材料的介电常数

    Figure  6.  Dielectric constant of SiO2@(VTMO-GE)/MBAE composites

    图  7  SiO2@(VTMO-GE)/MBAE复合材料的介电损耗

    Figure  7.  Dielectric loss of SiO2@(VTMO-GE)/MBAE composites

    表  1  SiO2@(乙烯基三甲氧基硅烷-石墨烯)/4′4-二氨基二苯甲烷型双马来酰亚胺-二烯丙基双酚-双酚A二烯丙基醚(SiO2@(VTMO-GE)/MBAE)复合材料的编号

    Table  1.   Number of SiO2@(vinyl trimethoxysilane- graphene)/4,4′-diaminodiphenyl methane bismaleimide-diallyl bisphenol A-bisphenol A bisallyl ether(SiO2@(VTMO-GE)/MBAE) composites

    No.ComponentMass fraction of SiO2@(VTMO-GE)/wt%
    A0MBAE0
    A1SiO2@VTMO-GE/MBAE0.5
    A2SiO2@VTMO-GE/MBAE1.0
    A3SiO2@VTMO-GE/MBAE1.5
    A4SiO2@VTMO-GE/MBAE2.0
    A5SiO2@VTMO-GE/MBAE3.0
    下载: 导出CSV

    表  2  SiO2@(VTMO-GE)/MBAE复合材料的热失重数据

    Table  2.   Thermogravimetry data of SiO2@(VTMO-GE)/MBAE composites

    No.Td/℃Td5/℃Td10/℃
    A1401412426
    A2404416425
    A3404416427
    A4410418429
    A5411419432
    Notes: Td—Thermal decomposition temperature; Td5—Temperature at 5% mass loss; Td10—Temperature at 10% mass loss.
    下载: 导出CSV
  • [1] KOTROTSOS A, TSOKANAS P, TSANTZALIS S, et al. Healing of carbon fiber reinforced plastics by dies-alder based polymer: Effects of healing agent concentration and curing cycle[J]. Journal of Applied Polymer Science,2019,136(19):47478. doi: 10.1002/app.47478
    [2] 董慧民, 喻彪, 闫丽, 等. 双马来酰亚胺/聚醚砜福相树脂固化中相形貌与化学流变性能[J]. 航空材料学报, 2018, 38(6):64-70.

    DONG Huimin, YU Biao, YAN Li, et al. Phase morphology and chemical rheological properties of bismaleimide/polyethersulfone phase-facies cured[J]. Journal of Aeronautical Materials,2018,38(6):64-70(in Chinese).
    [3] 刘振, 贾园, 赵春宝, 等. 改性MoS2/双马来酰亚胺树脂的制备及性能研究[J]. 中国钼业, 2019(2):37-40.

    LIU Zhen, JIA Yuan, ZHAO Chunbao, et al. Preparation and properties of modified MoS2/bismaleimide resin[J]. China Molybdenum Industry,2019(2):37-40(in Chinese).
    [4] 周如金, 王翔, 王钧, 等. 苯并噁嗪增韧改性双马来酰亚胺树脂的制备与研究[J]. 玻璃钢/复合材料, 2018(12):21-27. doi: 10.3969/j.issn.1003-0999.2018.12.004

    ZHOU Rujin, WANG Xiang, WANG Jun, et al. Preparation and study of benzooxazine toughened modified bismaleimide resin[J]. Fiber Reinforced Plastics/Composites,2018(12):21-27(in Chinese). doi: 10.3969/j.issn.1003-0999.2018.12.004
    [5] 朱金华, 刘晓辉, 赵颖, 等. 增韧改性氰酸酯/双马来酰亚胺/烯丙基双酚A树脂体系粘接性能研究[J]. 化学与黏合, 2016, 38(3):176-179.

    ZHU Jinhua, LIU Xiaohui, ZHAO Ying, et al. Study on bonding properties of toughened modified cyanate/bismaleimide/allyl bisphenol A resin system[J]. Chemistry and Adhesion,2016,38(3):176-179(in Chinese).
    [6] 吕燕, 常刚, 黄春江, 等. 双马来酰亚胺树脂增韧改性剂的合成[J]. 热固性树脂, 2014, 29(6):51-55.

    LV Yan, CHANG Gang, HUANG Chunjiang, et al. Synthesis of bismaleimide resin toughening modifier[J]. Thermosetting Resin,2014,29(6):51-55(in Chinese).
    [7] 张冬丽. 导热/介电聚合物基复合材料结构与性能研究[D]. 北京: 北京科技大学, 2019.

    ZHANG Dongli. Study on structure and properties of thermal/dielectric polymer matrix composites[D]. Beijing: Beijing University of Science and Technology, 2019(in Chinese).
    [8] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [9] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9-10):351-355. doi: 10.1016/j.ssc.2008.02.024
    [10] 程江龙, 刘延磊, 吴胜明, 等. 原位改性法制备功能化石墨烯/聚甲基丙烯酸甲酯复合材料及其性能研究[J]. 青岛科技大学学报(自然科学版), 2018, 39(1):84-89.

    CHENG Jianglong, LIU Yanlei, WU Shengming, et al. Preparation of functionalized graphene/polymethyl methacrylate composites by in-situ modification and their properties[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition),2018,39(1):84-89(in Chinese).
    [11] 韩乔乔, 周智勇, 陈磊. 石墨烯增强碳纤维环氧复合材料界面性能研究[J]. 针织工业, 2019(1):1-3. doi: 10.3969/j.issn.1000-4033.2019.01.001

    HAN Qiaoqiao, ZHOU Zhiyong, CHEN Lei. Study on interface properties of graphene reinforced carbon fiber epoxy composites[J]. Knitting Industry,2019(1):1-3(in Chinese). doi: 10.3969/j.issn.1000-4033.2019.01.001
    [12] 贾海鹏, 苏勋家, 侯根良, 等. 石墨烯/聚合物纳米复合材料制备与微波吸收性能研究进展[J]. 化工学报, 2012, 63(6):1663-1668. doi: 10.3969/j.issn.0438-1157.2012.06.001

    JIA Haipeng, SU Xunjia, HOU Genliang, et al. Progress in preparation and microwave absorption properties of graphene/polymer nanocomposites[J]. Journal of Chemical Industry and Engineering,2012,63(6):1663-1668(in Chinese). doi: 10.3969/j.issn.0438-1157.2012.06.001
    [13] 林金堂. 基于化学气相沉积石墨烯/PEDOT-PSS共混复合材料的导电薄膜[J]. 复合材料学报, 2018, 35(1):180-184.

    LIN Jintang. Conductive film based on chemical vapor deposited graphene/PEDOT-PSS blended composites[J]. Acta Materiae Compositae Sinica,2018,35(1):180-184(in Chinese).
    [14] 叶国锐, 晏义伍, 曹海琳. 氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J]. 复合材料学报, 2014, 31(6):1402-1408.

    YE Guorui, YAN Yiwu, CAO Hailin. Graphene oxide modified basalt fiber and its properties of reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica,2014,31(6):1402-1408(in Chinese).
    [15] CHEN Z Y, GUO L L, YAN H X, et al. Amino functionalization of graphene/graphene-like MoSe2 hybrids as lubricant additives for bismaleimide composites: Preparation, mechanical and tribological properties[J]. Composites Part B: Engineering,2019,61:263-271.
    [16] LERF A, HE H, FORSTER M, et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry B,1998,102(23):4477-4482. doi: 10.1021/jp9731821
    [17] 李闯, 李伟, 王明宇, 等. 功能化氧化石墨烯改性双马树脂及其复合材料[J]. 材料工程, 2018, 46(12):48-53. doi: 10.11868/j.issn.1001-4381.2017.000494

    LI Chuang, LI Wei, WANG Mingyu, et al. Functionalized graphene oxide modified double horse resin and its composite material[J]. Materials Engineering,2018,46(12):48-53(in Chinese). doi: 10.11868/j.issn.1001-4381.2017.000494
    [18] CHEN Y F, WU Y Z, DAI G Q, et al. Effect of functionalized graphene on mechanical properties and dielectric constant of bismaleimide composites[J]. Journal of Materials Science: Materials in Electronics,2019,30:6234-6241. doi: 10.1007/s10854-019-00926-9
    [19] 宋鲁彬, 郭章新, 李忠贵, 等. 含缺陷的石墨烯对增强树脂基复合材料力学性能的影响[J]. 高压物理学报, 2018, 32(6):40-49.

    SONG Lubin, GUO Zhangxin, LI Zhonggui, et al. Effect of graphene containing defects on mechanical properties of reinforced resin matrix composites[J]. Chinese Journal of High Pressure Physics,2018,32(6):40-49(in Chinese).
    [20] HAO F, FANG D N, XU Z P, et al. Mechanical and thermal transport properties of graphene with defects[J]. Applied Physics Letters,2011,99(4):041901.
    [21] ZHANG G L, LU S C, KE Y C. Effects of silica nanoparticles on tribology performance of poly(epoxy resin-bismaleimide)-based nanocomposites[J]. Polymer Engineering and Science,2019,59(2):274-283. doi: 10.1002/pen.24901
    [22] MARTIN R, ZHAO Y H, KEWES G, et al. Silver nanowires with optimized silica coating as versatile plasmonic resonators[J]. Scientific Reports,2019,9(1):3859. doi: 10.1038/s41598-019-40380-5
    [23] 中国国家标准化管理委员会. 树脂浇筑体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Test methods for properties of resin casting boby: GB/T 2567—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    [24] NAN C W. Physics of inhomogeneous inorganic materials[J]. Progress in Materials Science,1993,37(1):1-116.
    [25] 胡济珠, 董岚, 卢婷玉, 等. 高热导率的聚偏氟乙烯/石墨烯复合材料[J]. 集成技术, 2019, 8(1):15-23.

    HU Jizhu, DONG Lan, LU Tingyu, et al. High thermal conductivity polyvinylidene fluoride/graphene composites[J]. Integration Technology,2019,8(1):15-23(in Chinese).
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  806
  • HTML全文浏览量:  193
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-28
  • 录用日期:  2019-07-01
  • 网络出版日期:  2019-09-11
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回