留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预浸料先进拉挤成型的固化传热过程数值模拟

姜碧羽 齐俊伟 刘小林

姜碧羽, 齐俊伟, 刘小林. 预浸料先进拉挤成型的固化传热过程数值模拟[J]. 复合材料学报, 2020, 37(6): 1496-1504. doi: 10.13801/j.cnki.fhclxb.20190904.001
引用本文: 姜碧羽, 齐俊伟, 刘小林. 预浸料先进拉挤成型的固化传热过程数值模拟[J]. 复合材料学报, 2020, 37(6): 1496-1504. doi: 10.13801/j.cnki.fhclxb.20190904.001
JIANG Biyu, QI Junwei, LIU Xiaolin. Numerical simulation of curing and heat transfer process of prepreg in advanced pultrusion[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1496-1504. doi: 10.13801/j.cnki.fhclxb.20190904.001
Citation: JIANG Biyu, QI Junwei, LIU Xiaolin. Numerical simulation of curing and heat transfer process of prepreg in advanced pultrusion[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1496-1504. doi: 10.13801/j.cnki.fhclxb.20190904.001

预浸料先进拉挤成型的固化传热过程数值模拟

doi: 10.13801/j.cnki.fhclxb.20190904.001
基金项目: “高档数控机床与基础制造装备”科技重大专项(2017ZX04009001)
详细信息
    通讯作者:

    齐俊伟,硕士,高级工程师,硕士生导师,研究方向为先进复合材料自动化成型技术 E-mail:qijunwei@nuaa.edu.cn

  • 中图分类号: TB332

Numerical simulation of curing and heat transfer process of prepreg in advanced pultrusion

  • 摘要: 对M21C碳纤维/环氧树脂复合材料预浸料在先进拉挤成型过程中的温度与固化度曲线进行了研究。使用DSC测得M21C预浸料在升温与恒温状态下的固化反应动力学方程,用于树脂固化反应的计算。基于有限元软件,结合有限差分法与体积控制法编写脚本解决热传导与树脂固化反应的计算,从而得到温度与固化度曲线,并在先进拉挤生产中测得实际的温度与固化度曲线,结果表明计算与实测曲线基本吻合,因此验证了算法的可行性。改变先进拉挤的工艺参数(加热温度区间、拉挤速度)再进行模拟计算,通过计算结果优化工艺参数,得到帽形梁先进拉挤三区间加热的理想工艺参数:模具加热温度区间为160-180-200℃;拉挤速度为1 cm/60 s。

     

  • 图  1  先进拉挤(ADP)技术成型流程示意图

    Figure  1.  Schematic diagram of advanced pultrusion(ADP) molding process

    图  2  M21C碳纤维/环氧树脂预浸料动态固化DSC曲线

    Figure  2.  Dynamic curing DSC curves of M21C carbon fiber/epoxy prepreg

    图  3  M21C碳纤维/环氧树脂预浸料等温固化DSC曲线

    Figure  3.  Isothermal curing DSC curves of M21C carbon fiber/epoxy prepreg

    图  4  帽形梁尺寸

    Figure  4.  Size of cap-beam

    图  5  帽形梁有限元模型

    Figure  5.  Finite element model of cap-bean

    图  6  拉挤过程多区间加热模具示意图

    Figure  6.  Schematic diagram of multi-section heating mold for pultrusion process

    图  7  网格划分与节点控制体积示意图

    Figure  7.  Schematic diagram of meshing and node control volume

    图  8  数值程序模拟流程图

    Figure  8.  Flowchart of numerical program simulation

    图  9  帽形梁测温点

    Figure  9.  Temperature measurement points in cap-beam

    图  10  模拟与实测帽形梁温度曲线对比

    Figure  10.  Comparison of simulated and measured temperature curves of cap-beam

    图  11  模拟与实测帽形梁固化度曲线对比

    Figure  11.  Comparison of simulated and measured cure curves of cap-beam

    图  12  不同温度区间下M21C碳纤维/环氧树脂预浸料的温度变化曲线

    Figure  12.  Temperature curves of M21C carbon fiber/epoxy prepreg in different temperature intervals

    图  13  不同温度区间下M21C碳纤维/环氧树脂预浸料的固化度变化曲线

    Figure  13.  Degree of cure curves of M21C carbon fiber/epoxy prepreg in different temperature intervals

    图  14  不同拉挤速度下M21C碳纤维/环氧树脂预浸料的温度变化曲线

    Figure  14.  Temperature curves of M21C carbon fiber/epoxy prepreg at different pultrusion speeds

    图  15  不同拉挤速度下M21C碳纤维/环氧树脂预浸料的固化度变化曲线

    Figure  15.  Degree of cure curves of M21C carbon fiber/epoxy prepreg at different pultrusion speeds

    表  1  M21C碳纤维/环氧树脂预浸料在不同升温速率下的固化反应总热Hu

    Table  1.   Total heat Hu of curing reaction of M21C carbon fiber/epoxy prepreg at different heating rates

    Heating rate/(K·min−1)Heat of curing reaction/(J·g−1)Hu/(J·g−1)
    2340.3348.1
    5344.2348.1
    7352.4348.1
    10355.4348.1
    下载: 导出CSV

    表  2  M21C碳纤维/环氧树脂预浸料动态固化反应动力学参数

    Table  2.   Kinetic parameters of dynamic curing reaction of M21C carbon fiber/epoxy prepreg

    Heating rate/(K·min−1)Amn
    22.22×1090.144583.29743
    51.29×1090.126823.99609
    78.30×1080.101072.63121
    106.59×1080.108962.22948
    Average1.25×1090.120353.03855
    下载: 导出CSV

    表  3  M21C碳纤维/环氧树脂预浸料等温固化反应放热量

    Table  3.   Isothermal curing reaction exotherm of M21C carbon fiber/epoxy prepreg

    Isothermal temperature/℃Hr/(J·g−1)HR/(J·g−1)Hu/(J·g−1)
    140189.5172.20361.70
    150206.1161.20367.30
    160281.1 92.27373.37
    170349.7 26.15375.85
    Notes: Hr—Isothermal reaction heat; HR—Remnant heat; Hu—Total reaction heat.
    下载: 导出CSV

    表  4  M21C碳纤维/环氧树脂预浸料等温固化反应动力学参数

    Table  4.   Kinetic parameters of isothermal curing reaction of M21C carbon fiber/epoxy prepreg

    Isothermal temperature/℃kmn
    1401.77×10−40.270581.56186
    1503.44×10−40.377492.31377
    1606.83×10−40.481992.24163
    1701.05×10−30.538162.13189
    Averge0.417062.06229
    下载: 导出CSV

    表  5  M21C碳纤维/环氧树脂预浸料热性能参数

    Table  5.   Thermal property parameters of M21C carbon fiber/epoxy prepreg

    ρ/(kg·m−3)Cp/(J·(kg·K)−1)k/(W·(m·K)−1)
    Epoxy resin1 2601 2550.21
    Carbon fiber1 790712kc=11.6, kc=0.75
    Composite(Vr=0.34)1 609.81898.32kl=66.0, kl=0.78
    Notes: ρ—Volume density; Cp—Specific heat capacity; k—Volume thermal conductivity.
    下载: 导出CSV

    表  6  模拟与实测帽形梁最终固化度α对比

    Table  6.   Comparison of final degree of cure α between simulated and measured results of cap-beam

    Temperature interval/℃HR/(J·g−1)α from experimentα from simulation
    120-140-160158.370.54500.4830
    140-160-18056.0900.83890.7956
    160-180-20023.4500.93260.9238
    下载: 导出CSV
  • [1] 齐俊伟, 李勇, 肖军. 先进拉挤成形技术及其在大飞机复合材料结构中的应用[J]. 航空制造技术, 2011(15):58-60. doi: 10.3969/j.issn.1671-833X.2011.15.012

    QI Junwei, LI Yong, XIAO Jun. Advanced pultrusion technology used on large aircraft composite structures[J]. Aeronautical Manufacturing Technology,2011(15):58-60(in Chinese). doi: 10.3969/j.issn.1671-833X.2011.15.012
    [2] 陈以传. 帽形长桁先进拉挤成型技术研究[D]. 南京: 南京航空航天大学, 2018.

    CHEN Yichuan. Research on advanced pultrusion technology of cap-shaped long raft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [3] SORRENTINO L, ESPOSITO L, BELLINI C. A new methodology to evaluate the influence of curing overheating on the mechanical properties of thick FRP laminates[J]. Composites Part B: Engineering,2016,109:187-196.
    [4] LIN X L, CROUCH I G, LAM Y C. Simulation of heat transfer and cure in pultrusion with a general-purpose finite element package[J]. Composites Science and Technology,2000,60(6):857-864. doi: 10.1016/S0266-3538(99)00189-X
    [5] LIN X L. Numerical modeling on pultrusion of composite I beam[J]. Composites Part A: Applied Science and Manufacturing,2001,32A(5):663-681.
    [6] LIN X L. A finite element/nodal volume technique for flow simulation of injection pultrusion[J]. Composites Part A: Applied Science and Manufacturing,2003,34A(7):649-661.
    [7] JOSHI S C, LAM Y C. Integrated approach for modelling cure and crystallization kinetics of different polymers in 3D pultrusion simulation[J]. Journal of Materials Processing Technology,2006,174(1):178-182.
    [8] BARAN I, HATTEL J H, TUTUM C C. Thermo-chemical modelling strategies for the pultrusion process[J]. Applied Composite Materials,2013,20(6):1247-1263. doi: 10.1007/s10443-013-9331-x
    [9] ZAPAROLI E L, STROHER G R, ANDRADE C R. Parabolic modeling of the pultrusion process with thermal property variation[J]. International Communications in Heat and Mass Transfer: A Rapid Communications Journal,2013,42:32-37. doi: 10.1016/j.icheatmasstransfer.2012.12.010
    [10] 刘天舒, 张宝艳, 陈祥宝. 3234中温固化环氧树脂体系的固化反应动力学研究[J]. 航空材料学报, 2005, 25(1):45-47, 52. doi: 10.3969/j.issn.1005-5053.2005.01.010

    LIU Tianshu, ZHANG Baoyan, CHEN Xiangbao. Curing reaction kinetics of 3234 medium temperature curing epoxy resin system[J]. Journal of Aeronautical Materials,2005,25(1):45-47, 52(in Chinese). doi: 10.3969/j.issn.1005-5053.2005.01.010
    [11] BARAN I, AKKERMAN R, HATTEL J H. Material characterization of a polyester resin system for the pultrusion process[J]. Composites Part B: Engineering,2014,64:194-201.
    [12] 代晓青, 肖加余, 曾竟成, 等. 等温DSC法研究RFI用环氧树脂固化动力学[J]. 复合材料学报, 2008, 25(4):18-23. doi: 10.3321/j.issn:1000-3851.2008.04.004

    DAI Xiaoqing, XIAO Jiayu, ZENG Jingcheng, et al. Curing kinetics of epoxy resin for RFI process using isothermal DSC[J]. Acta Materiae Compositae Sinica,2008,25(4):18-23(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.04.004
    [13] 谢占军, 杨喜, 王继辉. 等温DSC法研究风电叶片用环氧树脂固化动力学[J]. 玻璃钢/复合材料, 2018(6):94-98. doi: 10.3969/j.issn.1003-0999.2018.06.017

    XIE Zhanjun, YANG Xi, WANG Jihui. Curing kinetics of epoxy resin for wind turbine blades using isothermal DSC[J]. Fiber Reinforced Plastics/Composites,2018(6):94-98(in Chinese). doi: 10.3969/j.issn.1003-0999.2018.06.017
    [14] PALAZZO G S, PASQUINO R, CARLONE P. Pultrusion manufacturing process development by computational modelling and methods[J]. Mathematical and Computer Modelling,2006,44(7/8):701-709.
    [15] SAFONOV A A, CARLONE P, AKHATOV I. Mathematical simulation of pultrusion processes: A review[J]. Composite Structures,2018,184:153-177. doi: 10.1016/j.compstruct.2017.09.093
    [16] 陈幸开, 谢怀勤, 曲艳双. CFRP拉挤过程非稳态温度场数值模拟与FBG实时检测[J]. 复合材料学报, 2008, 25(5):114-119. doi: 10.3321/j.issn:1000-3851.2008.05.019

    CHEN Xingkai, XIE Huaiqin, QU Yanshuang. Simulation of unsteady temperature profile during CFRP pultrusion and detection by FBG[J]. Acta Materiae Compositae Sinica,2008,25(5):114-119(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.019
    [17] BARKANOV E, AKISHIN P, MIAZZA N L, et al. ANSYS-based algorithms for a simulation of pultrusion processes[J]. Mechanics of Advanced Materials and Structures,2017,24(5):377-384. doi: 10.1080/15376494.2016.1191096
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  981
  • HTML全文浏览量:  181
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-05
  • 录用日期:  2019-08-16
  • 网络出版日期:  2019-09-04
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回