留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二乙基次磷酸铝和埃洛石纳米管协效阻燃尼龙66的制备及性能

刘丽 韩思杰 张松 靳惠宇 周凌

刘丽, 韩思杰, 张松, 等. 二乙基次磷酸铝和埃洛石纳米管协效阻燃尼龙66的制备及性能[J]. 复合材料学报, 2020, 37(10): 2386-2393. doi: 10.13801/j.cnki.fhclxb.20190902.003
引用本文: 刘丽, 韩思杰, 张松, 等. 二乙基次磷酸铝和埃洛石纳米管协效阻燃尼龙66的制备及性能[J]. 复合材料学报, 2020, 37(10): 2386-2393. doi: 10.13801/j.cnki.fhclxb.20190902.003
LIU Li, HAN Sijie, ZHANG Song, et al. Preparation and properties of synergistic flame retardant nylon 66 with aluminium diethyl phosphate and halloysite nanotubes[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2386-2393. doi: 10.13801/j.cnki.fhclxb.20190902.003
Citation: LIU Li, HAN Sijie, ZHANG Song, et al. Preparation and properties of synergistic flame retardant nylon 66 with aluminium diethyl phosphate and halloysite nanotubes[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2386-2393. doi: 10.13801/j.cnki.fhclxb.20190902.003

二乙基次磷酸铝和埃洛石纳米管协效阻燃尼龙66的制备及性能

doi: 10.13801/j.cnki.fhclxb.20190902.003
基金项目: 国家高技术研发计划(863计划)(2015AA033905)
详细信息
    通讯作者:

    刘丽,博士,教授,博士生导师,研究方向为功能纤维、面料纺织品及聚合物基复合材料  E-mail:liuli2002@shu.edu.cn

  • 中图分类号: TB332;TQ323.6

Preparation and properties of synergistic flame retardant nylon 66 with aluminium diethyl phosphate and halloysite nanotubes

  • 摘要: 使用二乙基次磷酸铝(ADP)与埃洛石纳米管(HNTs)作为阻燃体系,采用熔融共混法对尼龙66(PA66)进行阻燃改性,研究了ADP与HNTs的配比对ADP-HNTs/PA66复合材料的阻燃性能、力学性能及热稳定性的影响,对燃烧残炭进行SEM观察,通过TG-IR和FTIR的手段研究阻燃机制。研究发现,ADP-HNTs/PA66复合材料的阻燃性能随HNTs的比例增大而先增高后下降,在阻燃体系为11wt%ADP-1wt%HNTs时,ADP-HNTs/PA66复合材料的UL94阻燃等级为V-0级,极限氧指数(LOI)为35.6%,具有协效阻燃作用;拉伸强度及断裂伸长率随ADP-HNTs阻燃体系中HNTs的比例在一定范围内增大而逐渐增大,冲击强度则逐渐下降;TG分析表明,HNTs能够促进成炭,减缓降解;SEM结果显示,ADP-HNTs阻燃体系能够形成连续致密炭层;TG-IR和FTIR分析表明,ADP兼具气相及凝聚相阻燃,HNTs能够在凝聚相中与ADP产生相互作用,促进交联成炭。

     

  • 图  1  阻燃剂二乙基次磷酸铝(ADP)及埃洛石纳米管(HNTs)结构示意图

    Figure  1.  Structure diagram of aluminium diethyl phosphate (ADP) and halloysite nanotubes (HNTs)

    图  2  ADP-HNTs/PA66复合材料的TG及DTG曲线

    Figure  2.  TG and DTG curves of ADP-HNTs/PA66 composites

    图  3  PA66及其不同阻燃体系复合材料的残炭SEM图像

    Figure  3.  SEM images of residual carbon of PA66 and its different flame retardant composites

    图  4  PA66及其不同阻燃体系复合材料热降解过程中不同温度下的TG-IR图谱

    Figure  4.  TG-IR spectra of PA66 and its different flame retardant composites at different temperatures during thermal degradation

    图  5  12wt%ADP/PA66(S1)及10wt%ADP-2wt%HNTs/PA66(S3)燃烧前后的FTIR图谱

    Figure  5.  FTIR spectra of 12wt%ADP/PA66 (S1) and 10wt%ADP-2wt%HNTs/PA66 (S3) before and after combustion ((a) 12wt%ADP/PA66 (S1) before combustion; (b) 12wt%ADP/PA66(S1) residual char; (c) 10wt%ADP-2wt%HNTs/PA66 (S3) before combustion; (d)10wt%ADP-2wt%HNTs/PA66 (S3) residual char)

    图  6  ADP与HNTs之间在ADP-HNTs/PA66复合材料凝聚相阻燃中可能的反应机制

    Figure  6.  Possible reaction mechanism between ADP and HNTs in ADP-HNTs/PA66 composite condensed phase flame retardant

    表  1  ADP-HNTs/尼龙66(PA66)复合材料配方

    Table  1.   Formulation of ADP-HNTs/nylon 66 (PA66) composites

    No.Mass fraction/wt%
    PA66ADPHNTsAntioxidants
    S0 100 0 0 0.0
    S1 87.5 12 0 0.5
    S2 87.5 11 1 0.5
    S3 87.5 10 2 0.5
    S4 87.5 9 3 0.5
    S5 87.5 8 4 0.5
    S6 86.5 10 3 0.5
    S7 85.5 10 4 0.5
    下载: 导出CSV

    表  2  ADP-HNTs/PA66复合材料的垂直燃烧(UL94)及极限氧指数(LOI)测试结果

    Table  2.   Vertical burning test (UL94) and limit oxygen index (LOI) test results of ADP-HNTs/PA66 composites

    No.UL 94LOI/%
    3.2 mmDripping1.6 mmDripping
    S0 V-2 Yes NR Yes 24.5
    S1 V-1 No V-2 Yes 33.3
    S2 V-0 No V-0 No 35.6
    S3 V-0 No V-0 No 33.8
    S4 V-0 No V-2 Yes 33.2
    S5 V-2 Yes V-2 Yes 32.0
    Note:NR—No rating.
    下载: 导出CSV

    表  3  ADP-HNTs/PA66复合材料的力学性能

    Table  3.   Mechanical properties of ADP-HNTs/PA66 composites

    No.Tensile strength/MPaElongation at break/%Impact strength/(kJ·m−2)
    S0 68.1 53.5 7.0
    S1 63.5 10.6 4.0
    S2 65.9 13.3 3.9
    S3 68.2 24.7 3.8
    S4 70.2 22.1 3.6
    S5 69.6 19.0 3.0
    S6 68.2 24.7 3.8
    S7 68.8 26.5 3.4
    下载: 导出CSV
  • [1] 徐翔民, 张予东, 李宾杰, 等. 纳米SiO2/尼龙66复合材料的力学性能和热性能[J]. 复合材料学报, 2008, 25(4):56-61. doi: 10.3321/j.issn:1000-3851.2008.04.011

    XU Xiangmin, ZHANG Yudong, LI Binjie, et al. Mechanical and thermal properties of nano-SiO2/nylon 66 compo-sites[J]. Acta Materiae Compositae Sinica,2008,25(4):56-61(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.04.011
    [2] 甘舟, 曹海琳, 晏义伍, 等. 碳纤维-Ni/尼龙66复合材料的制备与性能表征[J]. 复合材料学报, 2017, 34(5):945-951.

    GAN Zhou, CAO Hailin, YAN Yiwu, et al. Preparation and characterization of carbon fiber-Ni/nylon 66 composites[J]. Acta Materiae Compositae Sinica,2017,34(5):945-951(in Chinese).
    [3] 周霆, 唐银花, 田冶, 等. 高性能微胶囊化红磷阻燃ABS的协效作用[J]. 高分子材料科学与工程, 2010, 26(7):129-132.

    ZHOU Ting, TANG Yinhua, TIAN Ye, et al. The synergistic effect of microencapsulized red phosphorus flame retarded ABS composites[J]. Polymer Materials Science and Engineering,2010,26(7):129-132(in Chinese).
    [4] 程宝发, 马腾昊, 李向梅, 等. 聚酰胺6/二乙基次磷酸铝复合材料的阻燃性能[J]. 合成树脂及塑料, 2016, 33(4):24-28. doi: 10.3969/j.issn.1002-1396.2016.04.007

    CHENG Baofa, MA Tenghao, LI Xiangmei, et al. Flame retardant performance of PA6/ADP composites[J]. China Synthetic Resin and Plastics,2016,33(4):24-28(in Chinese). doi: 10.3969/j.issn.1002-1396.2016.04.007
    [5] 曹堃, 王开立, 姚臻. 聚磷酸铵的改性及其对聚丙烯阻燃特性的研究[J]. 高分子材料科学与工程, 2007, 23(4):136-139. doi: 10.3321/j.issn:1000-7555.2007.04.035

    CAO Kun, WANG Kaili, YAO Zhen. Modified ammonium polyphosphate and its application on polypropylene[J]. Polymer Materials Science and Engineering,2007,23(4):136-139(in Chinese). doi: 10.3321/j.issn:1000-7555.2007.04.035
    [6] 王建荣, 欧育湘, 刘治国, 等. 聚磷酸三聚氰胺对玻纤增强PA66的膨胀阻燃作用[J]. 工程塑料应用, 2004, 32(2):52-54. doi: 10.3969/j.issn.1001-3539.2004.02.015

    WANG Jianrong, OU Yuxiang, LIU Zhiguo, et al. Intumescent & fire-retardant function of melamine polyphosphate on glass fiber reinforced PA66[J]. Engineering Plastics Application,2004,32(2):52-54(in Chinese). doi: 10.3969/j.issn.1001-3539.2004.02.015
    [7] ZHANG S, TANG W, GU X, et al. Flame retardancy and thermal and mechanical performance of intercalated, layered double hydroxide composites of polyamide 11, aluminum phosphinate, and sulfamic acid[J]. Journal of Applied Polymer Science,2016,133(20):43370.
    [8] 陈雅君, 毛小军, 钱立军, 等. 二乙基次膦酸铝和OMMT在PLA中协同阻燃作用研究[J]. 工程塑料应用, 2015(3):19-24. doi: 10.3969/j.issn.1001-3539.2015.03.004

    CHEN Yajun, MAO Xiaojun, QIAN Lijun, et al. Synergistic effect between aluminum hypophosphite and OMMT in flame-retarded PLA[J]. Engineering Plastics Application,2015(3):19-24(in Chinese). doi: 10.3969/j.issn.1001-3539.2015.03.004
    [9] 王悦音. 二乙基次膦酸铝尺寸形貌调控及其应用研究[D]. 杭州: 浙江工业大学, 2017.

    WANG Yueyin. Study on size morphology control and application of aluminum diethylphosphinate[D]. Hangzhou: Zhejiang University of Technology, 2017(in Chinese).
    [10] 赵婉, 何敏, 张道海, 等. 含磷阻燃剂/硅酸盐协同阻燃尼龙6的研究进展[J]. 塑料, 2015, 44(6):41-44.

    ZHAO Wan, HE Min, ZHANG Daohai, et al. Research progress of phosphorus-containing flame retardant/silicate synergistic flame retardant nylon 6[J]. Plastic,2015,44(6):41-44(in Chinese).
    [11] 展召顺. 次磷酸铝阻燃协效体系对PA66性能及机理研究[D]. 哈尔滨: 东北林业大学, 2015.

    ZHAN Zhaoshun. Study on performance and mechanism of PA66 by aluminum phosphate flame retardant synergistic system[D]. Harbin: Northeast Forestry University, 2015(in Chinese).
    [12] MARNEY D C O, RUSSELL L J, WU D Y, et al. The suitability of halloysite nanotubes as a fire retardant for nylon 6[J]. Polymer Degradation and Stability,2008,93(10):1971-1978. doi: 10.1016/j.polymdegradstab.2008.06.018
    [13] MARNEY D C O, YANG W, RUSSELL L J, et al. Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6[J]. Polymers for Advanced Technologies,2012,23(12):1564-1571. doi: 10.1002/pat.3030
    [14] 刘喜山, 谷晓昱, 姜鹏, 等. 埃洛石纳米管对膨胀阻燃聚丙烯阻燃性能的影响[J]. 中国塑料, 2013, 27(2):86-89.

    LIU Xishan, GU Xiaoyu, JIANG Peng, et al. Effect of halloysite on flame retardant intumescent flame retardant modified polypropylene[J]. China Plastics,2013,27(2):86-89(in Chinese).
    [15] 全国塑料标准化技术委员会. 塑料: 燃烧性能的测定—水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2009.

    National Technical Committee on Plastic of Standardization Administration of China. Plastics-Determination of burning characteristics-Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [16] 全国塑料标准化技术委员会. 塑料: 用氧指数法测定燃烧行为: GB/T 2406—2009[S]. 北京: 中国标准出版社, 2009.

    National Technical Committee on Plastic of Standardization Administration of China. Plastics-Determination of burning behaviour by oxygen index: GB/T 2406—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [17] 全国塑料标准化技术委员会. 塑料: 拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006.

    National Technical Committee on Plastic of Standardization Administration of China. Plastics-Determination of tensile properties: GB/T 1040—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [18] 全国塑料标准化技术委员会. 塑料: 拉伸性能的测定: GB/T 1043—2008[S]. 北京: 中国标准出版社, 2008.

    National Technical Committee on Plastic of Standardization Administration of China. Plastics-Determination of charpy impact properties: GB/T 1043—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [19] 郭宝春, 邹全亮, 类延达, 等. 尼龙6/埃洛石纳米管纳米复合材料的制备与性能[J]. 化工新型材料, 2008, 36(6):32-34. doi: 10.3969/j.issn.1006-3536.2008.06.012

    GUO Baochun, ZOU Quanliang, LEI Yanda, et al. Preparation and properties of polyamide 6/halloysite nanotubes nanocomposites[J]. New Chemical Materials,2008,36(6):32-34(in Chinese). doi: 10.3969/j.issn.1006-3536.2008.06.012
    [20] BRAUN U, SCHARTEL B, FICHERA M A, et al. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6[J]. Polymer Degradation & Stability,2007,92(8):1528-1545.
    [21] LI L, WU Z, JIANG S, et al. Effect of halloysite nanotubes on thermal and flame retardant properties of polyamide 6/melamine cyanurate composites[J]. Polymer Compo-sites,2015,36(5):892-896. doi: 10.1002/pc.23008
    [22] YUAN B, BAO C, GUO Y, et al. Preparation and characterization of flame-retardant aluminum hypophosphite/poly(vinyl alcohol) composite[J]. Industrial & Engineering Chemistry Research,2012,51(43):14065-14075.
    [23] BRAUN U, SCHARTEL B. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fibre-reinforced poly(1,4-butylene terephthalate)[J]. Macromolecular Materials & Engineering,2010,293(3):206-217.
    [24] BRAUN U, BAHR H, STURM H, et al. Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): The influence of metal cation[J]. Polymers for Advanced Technologies,2010,19(6):680-692.
    [25] ZHI H, LIN G P, et al. Flame retardation of glass-fiber-reinforced polyamide 6 by combination of aluminum phenylphosphinate with melamine pyrophosphate[J]. Polymers for Advanced Technologies,2011,22(7):1166-1173. doi: 10.1002/pat.1922
    [26] ZHAN Z, XU M, LI B. Synergistic effects of sepiolite on the flame retardant properties and thermal degradation behaviors of polyamide 66/aluminum diethylphosphinate composites[J]. Polymer Degradation and Stability,2015,117:66-74. doi: 10.1016/j.polymdegradstab.2015.03.018
    [27] SI M, FENG J, HAO J, et al. Synergistic flame retardant effects and mechanisms of nano-Sb2O3 in combination with aluminum phosphinate in poly(ethylene terephthalate)[J]. Polymer Degradation and Stability,2014,100:70-78. doi: 10.1016/j.polymdegradstab.2013.12.023
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1585
  • HTML全文浏览量:  786
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-16
  • 录用日期:  2019-07-18
  • 网络出版日期:  2019-09-03
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回