留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单向复合材料横向裂纹黏弹性损伤演化模型

许飞 李磊 杨胜春

许飞, 李磊, 杨胜春. 单向复合材料横向裂纹黏弹性损伤演化模型[J]. 复合材料学报, 2020, 37(6): 1344-1351. doi: 10.13801/j.cnki.fhclxb.20190902.001
引用本文: 许飞, 李磊, 杨胜春. 单向复合材料横向裂纹黏弹性损伤演化模型[J]. 复合材料学报, 2020, 37(6): 1344-1351. doi: 10.13801/j.cnki.fhclxb.20190902.001
XU Fei, LI Lei, YANG Shengchun. A damage evolution law for transverse cracking in unidirectional composites of linear viscoelastic behavior[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1344-1351. doi: 10.13801/j.cnki.fhclxb.20190902.001
Citation: XU Fei, LI Lei, YANG Shengchun. A damage evolution law for transverse cracking in unidirectional composites of linear viscoelastic behavior[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1344-1351. doi: 10.13801/j.cnki.fhclxb.20190902.001

单向复合材料横向裂纹黏弹性损伤演化模型

doi: 10.13801/j.cnki.fhclxb.20190902.001
详细信息
    通讯作者:

    许飞,博士,工程师,研究方向为复合材料力学 E-mail: xufeiasri@hotmail.com

  • 中图分类号: O346.5

A damage evolution law for transverse cracking in unidirectional composites of linear viscoelastic behavior

  • 摘要: 建立一个考虑基体黏弹性的纤维增强聚合物单向复合材料在产生横向裂纹时的损伤演化模型,有效地预测了单向复合材料横向拉伸行为。假设呈现威布尔分布的缺陷会在变形的驱动下演化为损伤,并以此为基础建立了单向复合材料横向损伤演化模型。通过此模型,时间-温度叠加原理(TTSP)得到了更具有物理基础的解释。最后,通过具体例子阐述了此模型的应用,并通过试验对模型预测结果进行了验证。本模型有效地预测了单向复合材料横向拉伸行为。由于单向复合材料横向性能存在脆性,此模型还无法准确预测失效和强度。

     

  • 图  1  Wiechert 模型[9]

    Figure  1.  Wiechert model[9]

    图  2  单向复合材料代表体积元

    Figure  2.  Representative volume element of unidirectional (UD) composite

    图  3  T700/VTM 264-1碳纤维增强树脂单向复合材料应力松弛试件示意图

    Figure  3.  Stress relaxation specimen drawing of T700/VTM 264-1 carbon fiber(CF)/Resin unidirectional (UD) composites

    图  4  不同温度及通过时间-温度转换原理(TTSP)得到的参考温度下T700/VTM 264-1碳纤维增强树脂单向复合材料的松弛模量

    Figure  4.  Relaxation moduli of T700/VTM 264-1 CF/Resin UD composites at the reference temperature obtained from different temperatures by time-temperature superposition principle(TTSP)

    图  5  T700/VTM 264-1碳纤维增强树脂单向复合材料横向拉伸应力-应变曲线与无损伤演化曲线对比

    Figure  5.  Stress-strain curves of T700/VTM 264-1 CF/Resin UD composites in transverse direction compared with prediction without damage evolution

    图  6  加载速率为1 mm/min时不同温度下T700/VTM 264-1碳纤维增强树脂单向复合材料模型预测与试验应力-应变曲线对比

    Figure  6.  Stress-strain curves comparisons of T700/VTM 264-1 CF/Resin UD composites by model prediction and experiment at different temperatures at loading rate of 1 mm/min

    图  7  加载速率为0.1 mm/min时不同温度下T700/VTM 264-1碳纤维增强树脂单向复合材料模型预测与试验数据对比

    Figure  7.  Comparisons of T700/VTM 264-1 CF/Resin UD composites by model prediction and experiment at different temperatures at loading rate of 0.1 mm/min

    图  8  不同加载速率下T700/VTM 264-1碳纤维增强树脂单向复合材料横向拉伸强度的预测与试验结果对比

    Figure  8.  Comparisons of predicted and experimental transverse strength of T700/VTM 264-1 CF/Resin UD composites at various loading rates

    表  1  ${k_j}$${\tau _j}$的值

    Table  1.   Values of ${k_j}$ and ${\tau _j}$

    $j$${k_j}$/MPa${\tau _j}$/s
    1166.1610−3
    2134.4510−2
    3 010−1
    4127.591
    560.3310
    6270.04102
    7125.21103
    8278.80104
    9140.82105
    10725.03106
    11586.34107
    121 116.90108
    131 687.60109
    141 190.201010
    15921.531011
    Notes: ${k_j}$—Elastic modulus of spring connected with a dashpot; ${\tau _j}$—Relaxation time.
    下载: 导出CSV
  • [1] TALREJA R, SINGH C V. Damage and failure of composite materials[M]. Cambridge: Cambridge University Press, 2012.
    [2] ORIFICI A, HERSZBERG I, THOMSON R. Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures,2008,86:194-210. doi: 10.1016/j.compstruct.2008.03.007
    [3] LI S, REID S R, SODEN P D. A continuum damage model for transverse matrix cracking in laminated fibre-reinforced composites[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,1998,356(1746):2379-2412. doi: 10.1098/rsta.1998.0278
    [4] DAGHIA F, LADEVEZE P. Identification and validation of an enhanced mesomodel for laminated composites within the WWFE-III[J]. Journal of Composite Materials,2013,47:2675-2693. doi: 10.1177/0021998313494095
    [5] TALREJA R. A continuum mechanics characterization of damage in composite materials[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences,1985,399(1817):195-216.
    [6] YU T. Continuum damage mechanics models and their applications to composite components of aero-engines[D]. Nottingham: University of Nottingham, 2016.
    [7] AKSHANTALA N V, TALREJA R. A mechanistic model for fatigue damage evolution in composite laminates[J]. Mechanics of Materials,1998,29:123-140. doi: 10.1016/S0167-6636(98)00007-6
    [8] LEMAITRE J, DESMORAT R, SAUZAY M. Anisotropic damage law of evolution[J]. European Journal of Mechanics. A,2000,19(2):187-208. doi: 10.1016/S0997-7538(00)00161-3
    [9] CHRISTENSEN R M. Theory of viscoelasticity[M]. USA: Academic Press, 1982.
    [10] MIYANO Y, NAKADA M. Time and temperature dependent fatigue strengths for three directions of unidirectional CFRP[J]. Experimental Mechanics,2006:155-162.
    [11] KUMAR R S, TALREJA R. A continuum damage model for linear viscoelastic composite materials[J]. Mechanics of Materials,2003,35:463-480. doi: 10.1016/S0167-6636(02)00265-X
    [12] KOYANAGI J, NAKADA M, MIYANO Y. Prediction of long-term durability of unidirectional CFRP[J]. Journal of Reinforced Plastics and Composites,2011,30(15):1305-1313. doi: 10.1177/0731684411420314
    [13] MCCLINTOCK F A. Mechanical behavior of materials[M]. New Jersey: Addison-Wesley, 1966.
    [14] ANDREWS R D, TOBOLSKY A V. Elastoviscous properties of polyisobutylene. IV. Relaxation time spectrum and calculation of bulk viscosity[J]. Journal of Polymer Science,1951,7:221-242. doi: 10.1002/pol.1951.120070210
    [15] MIYANO Y, MIYANO Y, NAKAMAE R, et al. Time and temperature dependence of static, creep, and fatigue behavior for CF/epoxy strands[C]. ICCM-12. Paris: 1999.
    [16] MIYANO Y, NAKADA M, NISHIGAKI K. Prediction of long-term fatigue life of quasi-isotropic CFRP laminates for aircraft use[J]. International Journal of Fatigue,2006,28:1217-1225. doi: 10.1016/j.ijfatigue.2006.02.007
    [17] MIYANO Y, NAKADA M, CAI H. Formulation of long-term creep and fatigue strengths of polymer composites based on accelerated testing methodology[J]. Journal of Composite Materials,2008,42:1897-1919. doi: 10.1177/0021998308093913
    [18] NAKADA M, MIYANO Y. Accelerated testing for long-term fatigue strength of various FRP laminates for marine use[J]. Composites Science and Technology,2009,69:805-813. doi: 10.1016/j.compscitech.2008.02.030
    [19] OJOVAN M I, LEE W E. Viscosity of network liquids within doremus approach[J]. Journal of Applied Physics,2004,95:3803-3810. doi: 10.1063/1.1647260
    [20] OJOVAN M I, TRAVIS K P, HAND R J. Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships[J]. Journal of Physics: Condensed Matter,2007,19:415107. doi: 10.1088/0953-8984/19/41/415107
    [21] CARDON A H. Durability analysis of structural composite systems: Reliability, risk analysis and prediction of safe residual structural integrity-lectures of the special chair AIB-vincotte 1995[M]. Boca Raton: CRC Press, 1996.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  650
  • HTML全文浏览量:  257
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 录用日期:  2019-08-23
  • 网络出版日期:  2019-09-03
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回