留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟

田会文 周臻 陆纪平 彭振

田会文, 周臻, 陆纪平, 等. 纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟[J]. 复合材料学报, 2020, 37(7): 1629-1638. doi: 10.13801/j.cnki.fhclxb.20190827.001
引用本文: 田会文, 周臻, 陆纪平, 等. 纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟[J]. 复合材料学报, 2020, 37(7): 1629-1638. doi: 10.13801/j.cnki.fhclxb.20190827.001
TIAN Huiwen, ZHOU Zhen, LU Jiping, et al. Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer composite-confined ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1629-1638. doi: 10.13801/j.cnki.fhclxb.20190827.001
Citation: TIAN Huiwen, ZHOU Zhen, LU Jiping, et al. Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer composite-confined ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1629-1638. doi: 10.13801/j.cnki.fhclxb.20190827.001

纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟

doi: 10.13801/j.cnki.fhclxb.20190827.001
基金项目: 国家重点研发计划(2017YFC0703700)
详细信息
    通讯作者:

    周臻,教授,博士,博士生导师,研究方向为新材料与新型组合结构、损伤可控结构体系  E-mail:seuhj@163.com

  • 中图分类号: TU375.4

Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer composite-confined ultra-high performance concrete

  • 摘要: 利用LS-DYNA有限元分析软件建立纤维增强树脂(FRP)复合材料约束超高性能混凝土(UHPC)圆柱细观有限元模型,以研究其单轴受压性能。通过已有试验数据验证了模型的有效性,并建立了能准确反映FRP复合材料约束作用的K&C模型的剪切膨胀参数预测公式。在此基础上进行参数分析,研究FRP复合材料厚度、纤维缠绕角度和钢纤维掺量的影响。结果表明,本文模型不仅能模拟随机分布钢纤维对试件应力分布的影响,且能较准确反映FRP复合材料约束作用对核心UHPC强度和延性的提高效果。模型在轴压作用下的破坏模式和应力-应变曲线与试验结果基本一致。参数分析表明,随FRP复合材料厚度或纤维缠绕角度的增大,试件极限承载力和延性均增大,而增大钢纤维掺量虽可限制核心UHPC斜裂缝的开展,但对试件强度和延性影响较小。

     

  • 图  1  纤维增强树脂(FRP)复合材料约束超高性能混凝土(UHPC)轴压有限元分析模型

    Figure  1.  Finite element model of axial compression of fiber reinforced polymer(FRP) composite-confined ultra-high performance concrete(UHPC)

    图  2  钢纤维生成流程

    Figure  2.  Generation of steel fibers

    图  3  剪胀参数ϖ对FRP复合材料约束UHPC轴压力学性能的影响

    Figure  3.  Influence of shear dilation parameter ϖ on axial compressive behavior of FRP composite confined UHPC

    图  4  单元网格高宽比h/b对FRP复合材料约束UHPC轴压力学性能的影响

    Figure  4.  Influence of aspect ratio h/b of element mesh on axial compressive behavior of FRP composite confined UHPC

    图  5  FRP复合材料约束UHPC的模拟与试验应力-应变曲线对比

    Figure  5.  Comparison of simulation and test stress-strain curves of FRP composite confined UHPC

    图  6  文献[8]中GFRP约束UHPC试件典型破坏形态

    Figure  6.  Typical failure mode of GFRP confined UHPC specimen in Ref. [8]

    图  7  FRP复合材料约束UHPC受压应力-应变曲线各阶段示意图

    Figure  7.  Illustration of different stages of stress-strain curves of FRP composite confined UHPC under axial compression

    图  9  文献[8]中G5试件FRP复合材料环向应力

    Figure  9.  Hoop stress of FRP composite of specimen G5 in Ref. [8]

    图  10  文献[8]中G5试件钢纤维轴向应力

    Figure  10.  Axial stress of steel fibers of specimen G5 in Ref. [8]

    图  8  文献[8]中G5试件UHPC基体等效塑性应变

    Figure  8.  Equivalent plastic strain of UHPC matrix of specimen G5 in Ref. [8]

    图  11  剪胀参数ϖ拟合公式

    Figure  11.  Fitted equation of shear dilation parameter ϖ

    图  12  FRP复合材料厚度对FRP复合材料约束UHPC轴压力学性能的影响

    Figure  12.  Influence of FRP composite thickness on axial compressive behavior of FRP composite confined UHPC

    图  13  不同FRP复合材料管厚时核心UHPC破坏形态

    Figure  13.  Failure modes of UHPC core with different FRP composite tube thicknesses

    图  14  FRP复合材料纤维角度β对FRP复合材料约束UHPC轴压力学性能的影响

    Figure  14.  Influence of FRP composite fiber winding angle β on axial compressive behavior of FRP composite confined UHPC

    图  15  不同FRP复合材料纤维角度时核心UHPC破坏形态

    Figure  15.  Failure modes of UHPC core with different FRP composite fiber winding angles

    图  16  钢纤维掺量ρf对FRP复合材料约束UHPC轴压力学性能的影响

    Figure  16.  Influence of steel fiber content ρf on axial compressive behavior of FRP composite confined UHPC

    图  17  不同钢纤维体掺量时核心UHPC破坏形态

    Figure  17.  Failure modes of UHPC core with different steel fiber contents

    表  1  FRP复合材料板力学性能

    Table  1.   Mechanical properties of FRP composite laminate

    TypeTensile strength/MPaElastic modulus/GPa
    GFRP 610 26.1
    CFRP 850 70.6
    Notes: GFRP—Glass fiber reinforced polymer composite; CFRP—Carbon fiber reinforced polymer composite.
    下载: 导出CSV

    表  2  UHPC本构模型强度面参数

    Table  2.   Shear failure surfaces parameters of UHPC

    a0a1a2a0fa1fa1fa2f
    6.046 0.366 0.00639 2.722 0.813 0.366 0.00639
    下载: 导出CSV

    表  3  UHPC本构模型损伤演化参数

    Table  3.   Damage scaling parameters of UHPC

    b1b2b3
    1.60 1.701 1.449
    下载: 导出CSV

    表  4  FRP复合材料约束UHPC试验数据库

    Table  4.   Test database for FRP composite confined UHPC

    Ref.Specimen$ f_{\rm{c}}^{'}$/MPaEFRP/GPatFRP/mmD/mmE1/MPaE1/$ f_{\rm{c}}^{'}$ϖ
    [8] G4 189 26.10 4.08 108 986.00 10.43 0.290
    [8] G5 189 26.10 5.10 108 1 972.00 13.04 0.321
    [8] C2 189 70.60 2.04 108 2 465.00 14.11 0.358
    [8] C4 189 70.60 4.08 108 2 667.11 28.22 0.585
    [11] G5 130 41.58 5.07 100 4 158.00 31.98 0.647
    [11] G8 130 41.58 8.05 100 6 652.80 51.17 0.968
    Notes: $ f_{\rm{c}}^{'}$—Unconfined strength of UHPC; EFRP, tFRP—Elastic modulus and thickness of FRP composite tubes, respectively; D—Diameter of specimens; E1—Confinement stress provided by FRP composite tubes; ϖ—Shear dilation parameter.
    下载: 导出CSV

    表  5  FRP复合材料约束UHPC的模拟与试验极限状态对比

    Table  5.   Comparison of simulation and test ultimate condition of FRP composite confined UHPC

    Ref.SpecimenStrength/MPaError/%Ultimate axial strainError /%Hoop rupture strainError /%
    TestSimulationTestSimulationTestSimulation
    [8] G4 273.5 279.2 2.07 0.01060 0.0102 3.78 0.0135 0.0148 9.84
    [8] G5 298.9 299.5 0.20 0.01150 0.0114 0.86 0.0140 0.0152 8.30
    [8] C2 254.1 255.0 0.36 0.00680 0.0072 5.87 0.0069 0.0067 3.03
    [8] C4 372.2 366.3 1.59 0.01050 0.0111 5.71 0.0080 0.0072 10.55
    [11] G5 2 634.8 2 558.6 2.89 0.01648 0.0171 3.76
    [11] G8 3 564.3 3 323.8 6.75 0.02105 0.0210 0.19
    下载: 导出CSV
  • [1] 郑文忠, 吕雪源. 活性粉末混凝土研究进展[J]. 建筑结构学报, 2015, 36(10):44-58.

    ZHENG Wenzhong, LV Xueyuan. Literature review of reactive powder concrete[J]. Journal of Building Structures,2015,36(10):44-58(in Chinese).
    [2] 梁兴文, 胡翱翔, 于婧, 等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3):722-731.

    LIANG Xingwen, HU Aoxiang, YU Jing, et al. Effect of steel fibers on the flexural response of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(3):722-731(in Chinese).
    [3] 管品武, 涂雅筝, 张普, 等. 超高性能混凝土单轴拉压本构关系研究[J]. 复合材料学报, 2019, 36(5):1295-1305.

    GUAN Pinwu, TU Yazheng, ZHANG Pu, et al. A review on constitutive relationship of ultra-high performance concrete under uniaxial compression andtension[J]. Acta Materiae Compositae Sinica,2019,36(5):1295-1305(in Chinese).
    [4] SHI C, WU Z, XIAO J, et al. A review on ultra high performance concrete Part Ⅰ: Raw materials and mixture design[J]. Construction and Building Materials,2015,101:741-751. doi: 10.1016/j.conbuildmat.2015.10.088
    [5] WEI Y Y, WU Y F. Unified stress-strain model of concrete for FRP-confined columns[J]. Construction and Building Materials,2012,26(1):381-392. doi: 10.1016/j.conbuildmat.2011.06.037
    [6] 潘毅, 万里, 吴晓飞, 等. 负载下碳纤维布约束混凝土柱应力-应变关系的有限元分析[J]. 工业建筑, 2015, 45(s2):6-11.

    PAN Yi, WAN Li, WU Xiaofei, et al. Finite element analysis of the axial stress-strain relationship of concrete columns confined by CFRP under preload[J]. Industrial Construction,2015,45(s2):6-11(in Chinese).
    [7] YU T, ZHANG B, TENG J G. Unified cyclic stress-strain model for normal and high strength concrete confined with FRP[J]. Engineering Structures,2015,102:189-201. doi: 10.1016/j.engstruct.2015.08.014
    [8] ZOHREVAND P, MIRMIRAN A. Behavior of ultrahigh-performance concrete confined by fiber-reinforced polymers[J]. Journal of Materials in Civil Engineering,2011,23(12):1727-1734. doi: 10.1061/(ASCE)MT.1943-5533.0000324
    [9] GULER S. Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens[J]. Structural Engineering & Mechanics,2014,50(6):709-722.
    [10] WANG W Q, WU C Q, LIU Z X, et al. Compressive behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) confined with FRP[J]. Composite Structures,2018,204:419-437. doi: 10.1016/j.compstruct.2018.07.102
    [11] 田会文, 周臻, 陆纪平, 等. 钢纤维掺量对FRP管约束超高性能混凝土轴压性能的影响[J]. 东南大学学报(自然科学版), 2019, 49(3):481-487. doi: 10.3969/j.issn.1001-0505.2019.03.011

    TIAN Huiwen, ZHOU Zhen, LU Jiping, et al. Effects of steel fiber content on axial compression performance of UHPC filled FRP tubes[J]. Journal of Southeast University (Natural Science Edition),2019,49(3):481-487(in Chinese). doi: 10.3969/j.issn.1001-0505.2019.03.011
    [12] 金浏, 杜修力. 钢筋混凝土构件细观数值模拟分析[J]. 水利学报, 2012, 43(10):1230-1236.

    JIN Liu, DU Xiuli. Meso numerical simulation of reinforced concrete members[J]. Journal of Hydraulic Engineering,2012,43(10):1230-1236(in Chinese).
    [13] XU Z, HAO H, LI H N. Mesoscale modelling of fibre reinforced concrete material under compressive impact loading[J]. Construction and Building Materials,2012,26(1):274-288. doi: 10.1016/j.conbuildmat.2011.06.022
    [14] LIANG X, WU C. Meso-scale modelling of steel fibre reinforced concrete with high strength[J]. Construction and Building Materials,2018,165:187-198. doi: 10.1016/j.conbuildmat.2018.01.028
    [15] 赵秋山, 徐慎春, 刘中宪. 钢纤维增强超高性能混凝土抗压性能的细观数值模拟[J]. 复合材料学报, 2018, 35(6):1661-1673.

    ZHAO Qiushan, XU Shenchun, LIU Zhongxian. Microscopic numerical simulation of the uniaxial compression of steel fiber reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(6):1661-1673(in Chinese).
    [16] XU S, WU C, LIU Z, et al. Numerical study of ultra-high-performance steel fibre-reinforced concrete columns under monotonic push loading[J]. Advances in Structural Engineering,2018,21(8):1234-1248. doi: 10.1177/1369433217747710
    [17] ELSANADEDY H M, AL-SALLOUM Y A, ALSAYED S H, et al. Experimental and numerical investigation of size effects in FRP-wrapped concrete columns[J]. Construction and Building Materials,2012,29:56-72. doi: 10.1016/j.conbuildmat.2011.10.025
    [18] FERROTTO M F, FISCHER O, CAVALERI L. A strategy for the finite element modeling of FRP-confined concrete columns subjected to preload[J]. Engineering Structures,2018,173:1054-1067. doi: 10.1016/j.engstruct.2018.07.047
    [19] WU Y, CRAWFORD J E. Numerical modeling of concrete using a partially associative plasticity model[J]. Journal of Engineering Mechanics,2015,141(12):04015051. doi: 10.1061/(ASCE)EM.1943-7889.0000952
    [20] XU M, WILLE K. Calibration of K&C concrete model for UHPC in LS-DYNA[J]. Advanced Materials Research,2015,1081:254-259.
    [21] YOUSSF O, ELGAWADY M A, MILLS J E, et al. Finite element modelling and dilation of FRP-confined concrete columns[J]. Engineering Structures,2014,79:70-85. doi: 10.1016/j.engstruct.2014.07.045
    [22] WU Z, SHI C, HE W, et al. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete[J]. Construction and Building Materials,2016,103:8-14. doi: 10.1016/j.conbuildmat.2015.11.028
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  1055
  • HTML全文浏览量:  253
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-12
  • 录用日期:  2019-08-19
  • 网络出版日期:  2019-08-28
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回