留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混杂纤维增强应变硬化水泥基复合材料的压缩本构关系

张聪 余志辉 韩世诚 华渊

张聪, 余志辉, 韩世诚, 等. 混杂纤维增强应变硬化水泥基复合材料的压缩本构关系[J]. 复合材料学报, 2020, 37(5): 1221-1226. doi: 10.13801/j.cnki.fhclxb.20190823.002
引用本文: 张聪, 余志辉, 韩世诚, 等. 混杂纤维增强应变硬化水泥基复合材料的压缩本构关系[J]. 复合材料学报, 2020, 37(5): 1221-1226. doi: 10.13801/j.cnki.fhclxb.20190823.002
ZHANG Cong, YU Zhihui, HAN Shicheng, et al. Compression constitutive relation of hybrid fiber reinforced strain hardening cementitous composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1221-1226. doi: 10.13801/j.cnki.fhclxb.20190823.002
Citation: ZHANG Cong, YU Zhihui, HAN Shicheng, et al. Compression constitutive relation of hybrid fiber reinforced strain hardening cementitous composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1221-1226. doi: 10.13801/j.cnki.fhclxb.20190823.002

混杂纤维增强应变硬化水泥基复合材料的压缩本构关系

doi: 10.13801/j.cnki.fhclxb.20190823.002
基金项目: 江苏省自然科学基金青年项目(BK20170192);硅酸盐建筑材料国家重点实验室开放基金(SYSJJ2017-11);中央高校基本科研业务项目(JUSRP11712)
详细信息
    通讯作者:

    张聪,博士,副教授,硕士生导师,研究方向为高性能纤维水泥基复合材料与结构 E-mail:zhangcong@jiangnan.edu.cn

  • 中图分类号: TB332

Compression constitutive relation of hybrid fiber reinforced strain hardening cementitous composites

  • 摘要: 混杂纤维增强应变硬化水泥基复合材料(HyF/SHCC)的力学性能是近年来的研究热点问题之一,但是目前依然欠缺HyF/SHCC压缩本构关系的深入探讨。本文研究了钢纤维(SF)-聚乙烯醇(PVA)纤维增强SHCC (SF-PVA/SHCC)的压缩应力-应变全曲线,分析了纤维对HyF/SHCC抗压强度、压缩应变以及压缩韧性的影响。研究发现,在本文研究工况下混杂纤维的引入对材料的抗压强度无明显影响,但是提高了压缩峰值应变。钢纤维对HyF/SHCC压缩韧性的影响较为显著,且随着钢纤维掺量的增大,HyF/SHCC的压缩韧性逐渐提高。基于损伤力学理论,从能量的角度提出了一种新的单轴压缩本构模型,通过与试验曲线的对比,发现该模型可以较好地预测SF-PVA/SHCC的压缩应力-应变关系。

     

  • 图  1  压缩试验加载装置

    Figure  1.  Loading instrument for compressive test

    图  2  SHCC、PVA/SHCC和SF-PVA/SHCC试件的压缩应力-应变曲线

    Figure  2.  Compressive stress-strain curves of SHCC, PVA/SHCC and SF-PVA/SHCC

    图  3  本研究中HyF/SHCC的纤维增强因子Rv与弹性模量E (a)以及韧性指数(b)的关系

    Figure  3.  Relationships of reinforcing index Rv with elastic modulus E (a) and toughness index T (b) of HyF/SHCC in this study

    图  4  本构模型预测的PVA/SHCC和SF-PVA/SHCC压缩应力-应变曲线结果与试验结果的对比

    Figure  4.  Comparison of compressive stress-strain curves between predicted results and experimental results for PVA/SHCC and SF-PVA/SHCC based on the constitutive model

    表  1  应变硬化水泥基复合材料(SHCC)中纤维体积分数

    Table  1.   Volume fraction of different fibers in strain hardening cementitious composite (SHCC)

    No.GroupVolume fraction/%
    Steel fiber
    (SF)
    PVA fiber
    (PVA)
    ControlPlain00
    PVA/SHCCPVA202.00
    SF-PVA/SHCC-1SF0.25-PVA1.750.251.75
    SF-PVA/SHCC-2SF0.5-PVA1.50.501.50
    SF-PVA/SHCC-3SF0.75-PVA1.250.751.25
    SF-PVA/SHCC-4SF1-PVA11.001.00
    下载: 导出CSV

    表  2  SHCC、PVA/SHCC和SF-PVA/SHCC试件的平均弹性模量、峰值应力、峰值应变与压缩韧性

    Table  2.   Average elastic modulus, peak stress, peak strain and compressive toughness of SHCC, PVA/SHCC and SF-PVA/SHCC

    No.GroupsElastic modulus/
    GPa
    Peak stress/
    MPa
    Peak strain/
    10−6
    Compressive toughness/
    (N·mm/mm3)
    ControlPlain16.439.43 01720.5
    PVA/SHCCPVA217.236.64 09431.3
    SF-PVA/SHCC-1SF0.25PVA1.7518.537.34 11938.6
    SF-PVA/SHCC-2SF0.5PVA1.519.138.73 55639.4
    SF-PVA/SHCC-3SF0.75PVA1.2519.637.74 55340.8
    SF-PVA/SHCC-4SF1-PVA120.638.33 44541.3
    下载: 导出CSV
  • [1] QUDAH S, MAALEJ M. Application of engineered cementitious composites (ECC) in interior beam-column connections for enhanced seismic resistance[J]. Engineering Structures,2014,69:235-245. doi: 10.1016/j.engstruct.2014.03.026
    [2] ZHANG Y X, DENG M K, DONG Z F. Seismic response and shear mechanism of engineered cementitious composite (ECC) short columns[J]. Engineering Structures,2019,192:296-302. doi: 10.1016/j.engstruct.2019.05.019
    [3] COSTA F B, RIGHI D P, GRAEFF A G,. Experimental study of some durability properties of ECC with a more environmentally sustainable rice husk ash and high tenacity polypropylene fibers[J]. Construction and Building Materials,2019,213:505-513. doi: 10.1016/j.conbuildmat.2019.04.092
    [4] 王玉清, 孙亮, 刘曙光, 等. 不同纤维掺量下聚乙烯醇纤维增强水泥基复合材料徐变性能试验[J]. 复合材料学报, 2019, 36.

    WANG Y Q, SUN L, LIU S G, et al. Experimental study on the creep performance of engineered cementitious composite with polyvinyl alcohol fiber with different fiber contents[J]. Acta Mate-riae Compositae Sinica,2019,36(in Chinese).
    [5] AHMED A, ASSEM A H, MOHAMED K, et al. Evaluating the cracking behavior of ECC beam-column connections under cyclic loading by acoustic emission analysis[J]. Construction and Building Materials,2019,215:958-968. doi: 10.1016/j.conbuildmat.2019.04.213
    [6] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥基材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8): 1957-1967.

    JIANG J F, SUI K. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composite[J]. Acta Materiae Compositae Sinica,2019,36(8): 1957-1967(in Chinese).
    [7] MAALEJ M, QUEK S T, AHMED S F U, et al. Review of potential structural applications of hybrid fiber engineered cementitious composites[J]. Construction and Building Materials,2012,36:216-227. doi: 10.1016/j.conbuildmat.2012.04.010
    [8] AL-GEMEEL A, YAN Z, OSAMA Y. Use of hollow glass microspheres and hybrid fibres to improve the mechanical properties of engineered cementitious composite[J]. Construction and Building Materials,2018,171:858-870. doi: 10.1016/j.conbuildmat.2018.03.172
    [9] KHIN T S, ZHANG Y X, ZHANG L C. Material properties of a new hybrid fibre-reinforced engineered cementitious composites[J]. Construction and Building Materials,2013,43:399-407. doi: 10.1016/j.conbuildmat.2013.02.021
    [10] KHIN T S, ZHANG Y X, ZHANG L C. Impact resistance of hybrid-fibre engineered cementitious composite panels[J]. Composite Structures,2013,104:320-330. doi: 10.1016/j.compstruct.2013.01.029
    [11] POURFALAH S. Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures[J]. Construction and Building Materials,2018,158:921-937. doi: 10.1016/j.conbuildmat.2017.10.077
    [12] ALESSANDRO P F, HIROZO M, TOMOYA N. Tailoring hybrid strain-hardening cementitious composites[J]. ACI Materials Journal,2014,111(2):211-218.
    [13] ZHANG J, WANG Z B, WANG Q. Simulation and test of flexural performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite[J]. Journal of Composite Materials,2016,50(30):4291-4305. doi: 10.1177/0021998316636206
    [14] LI Q H, GAO X, XU S L. Multiple effects of nano-SiO2 and hybrid fibers on properties of high toughness fiber reinforced cementitious composites with high volume fly ash[J]. Cement and Concrete Composites,2016,72:201-212. doi: 10.1016/j.cemconcomp.2016.05.011
    [15] ZHOU J, PAN J, LEUNG C. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of Materials in Civil Engineering,2015,27(1):1-10.
    [16] LIU J C, TAN K H, GUO H C. Compressive stress-strain relationship of strain-hardening cementitious composite with hybrid fibres after high temperature exposure[C] // GILLIE & WANG. Application of Fire Engineering. London: Taylor & Francis Group, 2018: 395-401.
    [17] 中华人民共和国工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461-2018[S]. 北京: 中国建材工业出版社, 2018.

    Ministry of Industry and Information of the People’s Republic of China. Technology Standard test method for the mechanical properties of ductile fiber reinforced cementitious composites: JC/T 2461-2018[S]. Beijing: China Building Materials Press, 2018 (in Chinese).
    [18] 宁喜亮, 丁一宁. 钢纤维对混凝土单轴受压损伤本构模型的影响[J]. 建筑材料学报, 2015, 18(2):214-220. doi: 10.3969/j.issn.1007-9629.2015.02.006

    NING X L, DING Y N. Effect of steel fiber on the damage constitutive model of concrete under uni-axial compression[J]. Journal of Building Materials,2015,18(2):214-220(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.02.006
    [19] EZELDIN A, BALAGURU P. Normal and high-strength fiber reinforced concrete under compression[J]. Journal of Materials in Civil Engineering,1992,4:415-429. doi: 10.1061/(ASCE)0899-1561(1992)4:4(415)
    [20] OU Y, TSAI M, LIU K. Compressive behavior of steel fiber-reinforced concrete with a high reinforcing index[J]. Journal of Materials in Civil Engineering,2011,24(2):207-215.
    [21] NING X L, DING Y N, ZHANG F S. Experimental study and prediction model for flexural behaviour of reinforced SCC beam containing steel fibers[J]. Construction and Building Materials,2015,93:644-653. doi: 10.1016/j.conbuildmat.2015.06.024
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  815
  • HTML全文浏览量:  86
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 录用日期:  2019-07-22
  • 网络出版日期:  2019-08-23
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回