留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玄武岩纤维网格布增强混凝土板双向弯曲性能试验

王庆轩 丁一宁

王庆轩, 丁一宁. 玄武岩纤维网格布增强混凝土板双向弯曲性能试验[J]. 复合材料学报, 2020, 37(5): 1200-1210. doi: 10.13801/j.cnki.fhclxb.20190823.001
引用本文: 王庆轩, 丁一宁. 玄武岩纤维网格布增强混凝土板双向弯曲性能试验[J]. 复合材料学报, 2020, 37(5): 1200-1210. doi: 10.13801/j.cnki.fhclxb.20190823.001
WANG Qingxuan, DING Yining. Experiment on biaxial flexural behaviors of basalt fiber textile reinforced concrete slab[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1200-1210. doi: 10.13801/j.cnki.fhclxb.20190823.001
Citation: WANG Qingxuan, DING Yining. Experiment on biaxial flexural behaviors of basalt fiber textile reinforced concrete slab[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1200-1210. doi: 10.13801/j.cnki.fhclxb.20190823.001

玄武岩纤维网格布增强混凝土板双向弯曲性能试验

doi: 10.13801/j.cnki.fhclxb.20190823.001
基金项目: 国家自然科学基金(51578109)
详细信息
    通讯作者:

    丁一宁,博士,教授,博士生导师,研究方向为纤维混凝土复合材料 E-mail:ynding@hotmail.com

  • 中图分类号: TU528. 572

Experiment on biaxial flexural behaviors of basalt fiber textile reinforced concrete slab

  • 摘要: 为研究玄武岩纤维网格布增强混凝土(BFT/PC)板的双向弯曲性能,首先进行了耐碱试验,通过碱液处理前后纤维的微观形貌及网格布断裂强力保持率评价了玄武岩纤维网格布的耐碱性能。在此基础上进行了双向板弯曲试验,研究了网格布层数、混凝土保护层厚度和结构型聚丙烯(PP)纤维对BFT/PC板受弯性能的影响。结果表明:玄武岩纤维网格布在NaOH溶液处理28 d后的经向、纬向断裂强力保持率分别为63%和73%,仅次于耐碱玻璃纤维网格布,具有较好的耐碱耐久性能。较小的混凝土保护层厚度可提高BFT/PC板在正常使用极限状态挠度下的残余承载力。增加网格布层数和PP纤维掺量可改善BFT/PC板的内力和应力重分布,提高正常使用极限状态挠度下的残余承载力、极限承载力和弯曲韧性,在BFT/PC板中掺入8 kg/m3 PP纤维,残余承载力、极限承载力和能量吸收值分别提高了1.40倍、0.36倍和5.10倍。本试验将PP纤维和玄武岩纤维网格布作为增强材料应用于混凝土构件的尝试为海工及近海侵蚀环境的基础设施建设提供了新思路。

     

  • 图  1  试验装置

    Figure  1.  Test setup

    图  2  初始玄武岩网格布纤维束扫描电镜图像

    Figure  2.  SEM images of the yarn of pristine basalt fiber mesh

    图  3  NaOH溶液侵蚀处理的玄武岩网格布纤维束扫描电镜图像

    Figure  3.  SEM images of the yarn of basalt fiber mesh etched in NaOH solution

    图  4  混凝土基体处理的玄武岩网格布纤维束扫描电镜图像

    Figure  4.  SEM images of the yarn of basalt fiber mesh etched in concrete matrix

    图  5  玄武岩纤维、中碱玻璃纤维和耐碱玻璃纤维网格布在NaOH溶液中处理前后的经向(a)、纬向(b)拉伸断裂强力

    Figure  5.  Tensile breaking forces of basalt fiber mesh, C-glass fiber mesh and AR-glass fiber mesh in warp(a) and weft(b) directions before and after being etched in NaOH solution

    图  6  破坏后BFT/PC板的裂缝分布

    Figure  6.  Crack distribution of BFT/PC slab after failure

    图  7  BFT/PC板的荷载-挠度曲线

    Figure  7.  Load-deflection curve of BFT/PC slab

    图  8  不同层数网格布增强的BFT/PC板的荷载-挠度曲线

    Figure  8.  Load-deflection curves of BFT/PC slabs with different textile layer numbers

    图  9  不同层数网格布增强的BFT/PC板的能量吸收

    Figure  9.  Energy absorptions of BFT/PC slabs with different textile layer numbers

    图  10  不同层数网格布增强的BFT/PC板的破坏形态

    Figure  10.  Failure modes of BFT/PC slabs with different textile layer numbers

    图  11  不同混凝土保护层厚度BFT/PC板的荷载-挠度曲线

    Figure  11.  Load-deflection curves of BFT/PC slabs with different concrete cover thicknesses

    图  12  不同混凝土保护层厚度BFT/PC板的能量吸收

    Figure  12.  Energy absorptions of BFT/PC slabs with different concrete cover thicknesses

    图  13  BFT/PC1-2板的破坏形态

    Figure  13.  Failure mode of BFT/PC1-2 slab

    图  14  掺加不同含量PP纤维的BFT/PC板的荷载-挠度曲线

    Figure  14.  Load-deflection curves of BFT/PC slabs with different PP fiber contents

    图  15  掺加不同含量PP纤维的BFT/PC板的能量吸收

    Figure  15.  Energy absorptions of BFT/PC slabs with different PP fiber contents

    图  16  掺加不同含量PP纤维的BFT/PC板的破坏形态

    Figure  16.  Failure modes of BFT/PC slabs with different PP fiber contents

    图  17  PP纤维在BFT/PC中的增强机制

    Figure  17.  Strengthening mechanisms of PP fibers in BFT/PC

    表  1  细骨料混凝土配合比

    Table  1.   Mix proportion of fine-grained concrete

    Cement/
    (kg·m−3)
    Fly ash/
    (kg·m−3)
    Water/
    (kg·m−3)
    mw/mbSand/
    (kg·m−3)
    SP/
    (kg·m−3)
    5041262100.331 2007.2
    Notes: mw/mb—Water/binder mass ratio; SP—Superplasticizer.
    下载: 导出CSV

    表  2  各类混凝土基试件编号及对应增强相掺量

    Table  2.   Types of the prepared concrete slabs and corresponding reinforcement contents

    Slab typesBasalt fiber mesh layer numberPP fiber/(kg·m−3)Concrete cover thickness/mm
    PC00
    BFT/PC11010
    BFT/PC22010
    BFT/PC33010
    BFT/PC1-21020
    PP-BFT/PC41410
    PP-BFT/PC61610
    PP-BFT/PC81810
    Notes: PC—Plain concrete; BFT—Basalt fiber textile; PP—Polypropylene fiber.
    下载: 导出CSV
  • [1] HEGGER J, VOSS S. Investigations on the bearing behavior and application potential of textile reinforced concrete[J]. Engineering Structures,2008,30(7):2050-2056. doi: 10.1016/j.engstruct.2008.01.006
    [2] HEGGER J, KULAS C, HORSTMANN M. Realization of TRC facades with impregnated AR-glass textiles[J]. Key Engineering Materials,2011,466:121-130. doi: 10.4028/www.scientific.net/KEM.466.121
    [3] GAO W Y, HU K X, DAI J G, et al. Repair of fire-damaged RC slabs with basalt fabric-reinforced shot-crete[J]. Construction and Building Materials,2018,185:79-92. doi: 10.1016/j.conbuildmat.2018.07.043
    [4] PORTAL N W, FLANSBJER M, ZANDI K, et al. Bending behavior of novel textile reinforced concrete-foamed concrete (TRC-FC) sandwich elements[J]. Composite Structures,2017,177:104-118. doi: 10.1016/j.compstruct.2017.06.051
    [5] SHAMS A, HORSTMANN M, HEGGER J. Experimental investigations on textile reinforced concrete (TRC) sandwich sections[J]. Composite Structures,2014,118:643-653. doi: 10.1016/j.compstruct.2014.07.056
    [6] BERNAT E, GIL L, ROC P, et al. Experimental and analytical study of TRM strengthened brickwork walls under eccentric compressive loading[J]. Construction and Building Materials,2013,44(3):35-47.
    [7] KULAS C. Actual applications and potential of textile-reinforced concrete[J]. GRC,2015:1-11.
    [8] WILLIAMS PORTAL N, LUNDGREN K, WALTER A M, et al. Numerical modelling of textile reinforced concrete[C]//Proceedings of VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures. 2013: 886-897.
    [9] HEGGER J, WILL N, BRUCKERMANN O, et al. Load-bearing behavior and simulation of textile reinforced concrete[J]. Materials and Structures,2006,39(8):765-776. doi: 10.1617/s11527-005-9039-y
    [10] PELED A, COHEN Z, PASDER Y, et al. Influences of textile characteristics on the tensile properties of warp knitted cement based composites[J]. Cement and Concrete Composites,2008,30(3):174-183. doi: 10.1016/j.cemconcomp.2007.09.001
    [11] LI D, DING Y N, WANG Q, et al. Hybrid effect of fiber mesh and short fibers on the biaxial bending behavior of TRC[J]. Magazine of Concrete Research,2018:1-48.
    [12] 李冬, 丁一宁. 钢纤维对玄武岩纤维编织网增强混凝土板双向弯曲性能的影响[J]. 复合材料学报, 2019, 36(2):482-490.

    LI Dong, DING Yining. Effect of steel fiber on biaxial flexural property of TRC with basalt fiber mesh in slab test[J]. Acta Materiae Compositae Sinica,2019,36(2):482-490(in Chinese).
    [13] 丁一宁, 菅淑敏, 李冬. 玻璃纤维网格布的耐碱性能及其对混凝土板双向受弯性能的影响[J]. 复合材料学报, 2019, 36(4):954-963.

    DING Yining, JIAN Shumin, LI Dong. Alkaline resistance of glass fiber meshes and its effect on biaxial flexural behavior of concrete slabs[J]. Acta Materiae Compositae Sinica,2019,36(4):954-963(in Chinese).
    [14] HÄUßER-COMBE U, HARTIG J. Bond and failure mechanisms of textile reinforced concrete (TRC) under uniaxial tensile loading[J]. Cement and Concrete Composites,2007,29(4):279-289. doi: 10.1016/j.cemconcomp.2006.12.012
    [15] DU Y X, ZHANG X Y, LIU L L, et al. Flexural behavior of carbon textile-reinforced concrete with prestress and steel fibers[J]. Polymers,2018,10(1):98. doi: 10.3390/polym10010098
    [16] ZARGARAN M, ATTARI N K A, ALIZADEH S, et al. Minimum reinforcement ratio in TRC slabs for deflection hardening flexural performance[J]. Construction and Building Materials,2017,137:459-469. doi: 10.1016/j.conbuildmat.2017.01.091
    [17] LI T, ZHANG Y, DAI J G. Flexural behavior and micro-structure of hybrid basalt textile and steel fiber reinforced alkali-activated slag slabs exposed to elevated temperatures[J]. Construction and Building Materials,2017,152:651-660. doi: 10.1016/j.conbuildmat.2017.07.059
    [18] SHEN L, XU S, WANG J. Mechanical behaviour of TRC thin-plates exposed to high temperature: Experimental study[J]. Magazine of Concrete Research,2015,67(21):1135-1149. doi: 10.1680/macr.14.00394
    [19] 王激扬, 沈玲华, 徐世烺. 钢纤维TRC薄板的常温及高温后弯曲力学性能[J]. 工程力学, 2016, 33(b06):6-10.

    WANG Jiyang, SHEN Linghua, XU Shilang. Bending behavior of TRC thin-plates with short steel fibers at room temperature and after high temperature[J]. Engineering Mechanics,2016,33(b06):6-10(in Chinese).
    [20] PORTAL N W, LUNDGREN K, WALLBAUM H, et al. Sustainable potential of textile-reinforced concrete[J]. Journal of Materials in Civil Engineering,2015,27(7):04014207. doi: 10.1061/(ASCE)MT.1943-5533.0001160
    [21] BARHUM R, MECHTCHERINE V. Effect of short, dispersed glass and carbon fibers on the behavior of textile-reinforced concrete under tensile loading[J]. Engineering Fracture Mechanics,2012,92(92):56-71.
    [22] SCHEFFLER C, FÖRSTER T, MÄDER E, et al. Aging of alkali-resistant glass and basalt fibers in alkaline solutions: Evaluation of the failure stress by Weibull distribution function[J]. Journal of non-Crystalline Solids,2009,355(52):2588-2595.
    [23] GAO S L, MÄDER E, PLONKA R. Nanostructured coatings of glass fibers: Improvement of alkali resistance and mechanical properties[J]. Acta Materialia,2007,55(3):1043-1052. doi: 10.1016/j.actamat.2006.09.020
    [24] BUTLER M, MECHTCHERINE V, HEMPEL S. Experimental investigations on the durability of fibre-matrix interfaces in textile-reinforced concrete[J]. Cement and Concrete Composites,2009,31:221-231. doi: 10.1016/j.cemconcomp.2009.02.005
    [25] EFNARC. European specification for sprayed concrete[S]. Louthborough: Loughborough University, 1996.
    [26] ASTM International. Standard test method for determining tensile breaking strength of glass fiber reinforcing mesh for use in class PB exterior insulation and finish systems (EIFS), after exposure to a sodium hydroxide solution: E2098/E2098M-13[S]. West Conshohocken, PA, 2018.
    [27] BARHUM R, MECHTCHERINE V. Influence of short dispersed and short integral glass fibers on the mechan-ical behavior of textile-reinforced concrete[J]. Materials and Structures,2013,46(4):557-572. doi: 10.1617/s11527-012-9913-3
    [28] KONG K, MESTICOU Z, MICHEL M, et al. Comparative characterization of the durability behaviour of textile-reinforced concrete (TRC) under tension and bending[J]. Composite Structures,2017,179:107-123. doi: 10.1016/j.compstruct.2017.07.030
    [29] 丁一宁, 丁宁, 李东. 玄武岩和玻璃纤维的耐碱性及其网格布对混凝土双向板弯曲性能的影响[J]. 复合材料学报, 2020, 37(1):214-222.

    DING Yining, DING Ning, LI Dong. Alkaline resistance of basalt fiber and glass fiber and their effect on biaxial flexural behavior of concrete slab[J]. Acta Materiae Compositae Sinica,2020,37(1):214-222(in Chinese).
    [30] RYBIN V A, UTKIN A V, BAKLANOVA N I. Alkali-resistant coating for basalt fibers[J]. Protection of Metals and Physical Chemistry of Surfaces,2013,49(6):689-692. doi: 10.1134/S2070205113060142
    [31] DING Y N, KUSTERLE W. Comparative study of steel fiber-reinforced concrete and steel mesh-reinforced concrete at early ages in panel tests[J]. Cement and Concrete Research,1999,29(11):1827-1834. doi: 10.1016/S0008-8846(99)00177-5
    [32] SALEHIAN H, BARROS J A O, TAHERI M. Evaluation of the influence of post-cracking response of steel fibre reinforced concrete (SFRC) on load carrying capacity of SFRC panels[J]. Construction and Building Materials,2014,73:289-304. doi: 10.1016/j.conbuildmat.2014.09.043
    [33] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture and Building Press, 2010(in Chinese).
    [34] DEÁK T, CZIGÁNY T. Chemical composition and mechanical properties of basalt and glass fibers: A comparison[J]. Textile Research Journal,2009,79(7):645-651. doi: 10.1177/0040517508095597
    [35] ZHANG S, ZHAO B. Influence of polypropylene fibre on the mechanical performance and durability of concrete materials[J]. European Journal of Environmental and Civil Engineering,2012,16(10):1269-1277. doi: 10.1080/19648189.2012.709681
    [36] BANTHIA N, SAPPAKITTIPAKORN M. Toughness enhancement in steel fiber reinforced concrete through fiber hybridization[J]. Cement and Concrete Research,2007,37(9):1366-1372. doi: 10.1016/j.cemconres.2007.05.005
    [37] DU Y X, ZHANG X Y, ZHOU F, et al. Flexural behavior of basalt textile-reinforced concrete[J]. Construction and Building Materials,2018,183:7-21. doi: 10.1016/j.conbuildmat.2018.06.165
    [38] MICHELS J, WALDMANN D, MAAS S, et al. Steel fibers as only reinforcement for flat slab construction-Experimental investigation and design[J]. Construction and Building Materials,2012,26(1):145-155. doi: 10.1016/j.conbuildmat.2011.06.004
    [39] FALL D, SHU J, REMPLING R, et al. Two-way slabs: Experimental investigation of load redistributions in steel fiber reinforced concrete[J]. Engineering Structures,2014,80:61-74. doi: 10.1016/j.engstruct.2014.08.033
    [40] MICHELS J, CHRISTEN R, WALDMANN D. Experimental and numerical investigation on postcracking behavior of steel fiber reinforced concrete[J]. Engineering Fracture Mechanics,2013,98:326-349. doi: 10.1016/j.engfracmech.2012.11.004
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  1078
  • HTML全文浏览量:  132
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-16
  • 录用日期:  2019-07-24
  • 网络出版日期:  2019-08-23
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回