留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制

陈丁丁 朱萌 胡其高 王曼漪 王蕊

陈丁丁, 朱萌, 胡其高, 等. 含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制[J]. 复合材料学报, 2020, 37(6): 1312-1320. doi: 10.13801/j.cnki.fhclxb.20190822.001
引用本文: 陈丁丁, 朱萌, 胡其高, 等. 含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制[J]. 复合材料学报, 2020, 37(6): 1312-1320. doi: 10.13801/j.cnki.fhclxb.20190822.001
CHEN Dingding, ZHU Meng, HU Qigao, et al. Tensile failure mechanism of carbon fiber reinforced polymer composites with ply splice[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1312-1320. doi: 10.13801/j.cnki.fhclxb.20190822.001
Citation: CHEN Dingding, ZHU Meng, HU Qigao, et al. Tensile failure mechanism of carbon fiber reinforced polymer composites with ply splice[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1312-1320. doi: 10.13801/j.cnki.fhclxb.20190822.001

含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制

doi: 10.13801/j.cnki.fhclxb.20190822.001
基金项目: 国家自然科学基金(51503223);博士后科学基金(2017M623378)
详细信息
    通讯作者:

    胡其高,教授,硕士生导师,研究方向为地下工程与新材料设计 E-mail: 13308492472@189.cn

  • 中图分类号: TB332

Tensile failure mechanism of carbon fiber reinforced polymer composites with ply splice

  • 摘要: 对于尺寸较大或形状复杂的结构,通常需要在纤维增强树脂(FRP)复合材料内部对铺层进行拼接处理。铺层拼接会在材料内部引起复杂的应力分布,具有突出的安全隐患。以同一位置处出现不同层数铺层拼接的单向碳纤维增强树脂(CFRP)复合材料为研究对象,重点分析了铺层拼接对材料拉伸力学性能的影响机制。通过拉伸实验,测试了拼接对其力学强度的影响;用相机记录了破坏过程,并结合数字图像相关技术(DIC)对拼接位置附近的应变场进行了监测。利用有限元模型(FEM)模拟和分析结构的破坏机制,采用3D-Hashin准则和渐进损伤模型对CFRP复合材料铺层进行模拟;采用内聚力模型对胶层失效行为进行描述。实验结果表明,拼接结构的引入大幅降低了材料的抗拉强度。FEM模拟与实验测试结果吻合度高,说明了模型的有效性。综合实验结果和模拟分析得到,铺层拼接处产生应力集中,造成被拼接的两部分分离并伴随拼接铺层和连续铺层的层间剪切破坏;层间破坏发生后,拉伸载荷完全由连续铺层承载。因此,材料的最终承载能力由材料中连续铺层数决定。

     

  • 图  1  含拼接铺层碳纤维增强树脂(CFRP)复合材料示意图

    Figure  1.  Schematic diagram of carbon fiber reinforced polymer (CFRP) composite with ply splice

    图  2  CFRP复合材料拼接位置断层局部放大照片及示意图

    Figure  2.  Enlarged photos and schematic diagrams of ply splice structures for CFRP composite

    图  3  拉伸试样

    Figure  3.  Tensile sample

    图  4  实验装置

    Figure  4.  Experimental equipment

    图  5  含拼接铺层CFRP复合材料板有限元(FEM)模型

    Figure  5.  Finite element method (FEM) model of CFRP composites with ply splice (Macroscopic model diagram detail of spliced structural model)

    图  6  含拼接铺层CFRP复合材料结构强度随断层数的变化关系

    Figure  6.  Strength varies with the number of splice of CFRP composite structures

    图  7  不同断层CFRP复合材料试样实验荷载-位移曲线

    Figure  7.  Load-displacement curves of CFRP composite structures with different ply splices

    图  8  CFRP复合材料D5试样载荷-变形曲线和破环过程

    Figure  8.  Load-displacement curves and failure process of CFRP composites specimen D5

    图  9  CFRP复合材料D5试样数字图像相关(DIC)及数值模拟纵向应变、剪切应变云图

    Figure  9.  Image of tensile strain and shear strain of digital image correlation (DIC) technology and FEM of the CFRP composites specimen D5 ((a) Tensile strain eyy of DIC; (b) Tensile strain eyy of FEM; (c) Shear strain exy of DIC; (d) Shear strain exy of FEM)

    图  10  CFRP复合材料D5试样界面单元、纤维单元损伤演化及拉伸、剪切应力云图

    Figure  10.  Damage evolution, tensile stress and shear stress images of cohesive elements and CFRP composite elements of the CFRP composites specimen D5 ((a) SDEG of cohesive elements; (b) SDEG of CFRP elements; (c) Tensile stress S11; (d) Shear stress S13)

    表  1  T300/E901 CFRP复合材料力学性能和强度参数

    Table  1.   Material properties and strength parameters of T300/E901 CFRP composites

    MaterialMechanical parametersValue
    Epoxy resin E901 E/GPa 3.78
    ν 0.35
    Unidirectional CFRP E1/GPa 127.34
    E2/GPa 7.78
    E3/GPa 7.78
    ν12 0.27
    ν13 0.27
    ν23 0.42
    G12/GPa 5.00
    G13/GPa 5.00
    G23/GPa 3.08
    Xt/MPa 2 114
    Xc/MPa 704
    Yt/MPa 80
    Yc/MPa 68
    S12=S13/MPa 80
    S23/MPa 55
    Notes: E—Young’s modulus; ν—Poisson's ratio; G—Shear modulus; X, Y—Strength; Subscript 1, 2 and 3—Direction 1, 2 and 3; Subscript t—Tension; Subscript c—Compression.
    下载: 导出CSV

    表  2  含拼接铺层CFRP复合材料分层起始载荷FEM模拟值与实验均值对比

    Table  2.   Comparison of initial damage loads of experiment and FEM for CFRP composites with ply splice

    Initial damage load
    for experiment/N
    Initial damage load
    for FEM/N
    Error/%
    D338 936.9443 473.711.6
    D530 243.5732 568.5 7.6
    D726 098.1725 489.1 6.4
    下载: 导出CSV

    表  3  含拼接铺层CFRP复合材料极限载荷EMF模拟值与实验均值对比

    Table  3.   Comparison of ultimate loads of experiment and FEM for CFRP composites with ply splice

    Ultimate load for experiment/NUltimate load for FEM/NError/%
    D063 731.4862 850.3 1.7
    D347 655.4355 253.516.1
    D541 354.2545 521.910.1
    D740 472.9640 627.3 0.3
    下载: 导出CSV
  • [1] 罗益锋, 罗晰旻. 现代飞机用特种纤维及其复合材料的最新进展[J]. 纺织导报, 2018(S1):63-69.

    LUO Yifeng, LUO Ximin. Latest development of specialty fibers and its composites for modern aircraft[J]. China Textile Leader,2018(S1):63-69(in Chinese).
    [2] CASADEI P, GALATI N, PARRETTI R. Strength-ening of a bridge using two FRP technologies[C]. In: ACI (American Concrete Institute) Fall 2003 Convention, Boston, MA(US); 2003.
    [3] 李亮, 贾普荣, 矫桂琼, 等. 含铺层拼接层合板的力学性能[J]. 航空制造技术, 2009(S1):126-128.

    LI Liang, JIA Purong, JIAO Guiqiong, et al. Mechanical property of laminate with ply splice[J]. Aeronautica Manufacturin Technology,2009(S1):126-128(in Chinese).
    [4] 李亮, 贾普荣, 矫桂琼. 单向拼接复合材料层合板的抗拉强度研究[J]. 机械强度, 2013, 170(6):795-798.

    LI Liang, JIA Purong, JIAO Guiqiong. Tensile strength of unidirectional laminate with ply-splicing[J]. Journal of Mechanical Strength,2013,170(6):795-798(in Chinese).
    [5] 王建业, 贾普荣, 矫桂琼, 等. 含铺层拼接层合板的等效刚度估算[J]. 科学技术与工程, 2010(3):822-825. doi: 10.3969/j.issn.1671-1815.2010.03.055

    WANG Jianye, JIA Purong, JIAO Guiqiong, et al. Equivalent rigidity estimation of the laminate with ply splice[J]. Science Technology and Engineering,2010(3):822-825(in Chinese). doi: 10.3969/j.issn.1671-1815.2010.03.055
    [6] 王玲, 贾普荣, 王文贵, 等. 含铺层拼接层合板面内剪切强度[J]. 材料科学与工程, 2010, 28(3):341-344.

    WANG Ling, JIA Purong, WANG Wengui, et al. In-plane shear strength of laminate with spliced plies[J]. Journal of Materials Science and Engineering,2010,28(3):341-344(in Chinese).
    [7] 钟安彪, 岳珠峰, 耿小亮, 等. 错位铺层拼接层合板力学性能分析与模拟方法探索[J]. 固体力学学报, 2015(s1):111-116.

    ZHONG Anbiao, YUE Zhufeng, GENG Xiaoliang, at el. The mechanical performance analysis and simulation method exploration of spliced ply with misalignment seams[J]. Chinese Journal of Solid Mechanics,2015(s1):111-116(in Chinese).
    [8] 王刚, 贾普荣, 黄涛, 等. 含切口复合材料层合板拉伸应变集中与失效分析[J]. 材料工程, 2018, 46(2):134-141. doi: 10.11868/j.issn.1001-4381.2016.000847

    WANG Gang, JIA Purong, HUANG Tao, et al. Strain concentration and failure analysis of notched composite laminates under tensile loading[J]. Journal of Materials Engineering,2018,46(2):134-141(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.000847
    [9] 陈丁丁, 王曼漪, 新川和夫, 等. 纤维增强树脂基复合材料拼接结构拉伸性能[J]. 复合材料学报, 2017(11):95-100.

    CHEN Dingding, WANG Manyi, ARAKAWA Kazuo, et al. Tensile properties of FRP ply splice structures[J]. Acta Materiae Compositae Sinica,2017(11):95-100(in Chinese).
    [10] 黄剑贤, 耿小亮, 张永久. 错位铺层拼接层合板承载机制的试验与模拟研究[J]. 应用力学学报, 2013(5):787-791. doi: 10.11776/cjam.30.05.B013

    HUANG Jianxian, GENG Xiaoliang, ZHANG Yongjiu. Experimental and numerical research for mechanical properties of ply splice laminates[J]. Chinese Journal of Applied Mechanics,2013(5):787-791(in Chinese). doi: 10.11776/cjam.30.05.B013
    [11] 李澄. 拼接与搭接铺层对复合材料性能影响研究[J]. 山东工业技术, 2019(1):14-16.

    LI Cheng. Study on the effects of splicing and lapping on the properties of composite materials[J]. Shandong Industrial Technology,2019(1):14-16(in Chinese).
    [12] 张顺庆, 高晨家, 张龙. 数字图像相关技术在应力应变测量中的发展与最新应用[J]. 影像科学与光化学, 2017, 35(2):193-198. doi: 10.7517/j.issn.1674-0475.2017.02.193

    ZHANG Shunqing, GAO Chenjia, ZHANG Long. The development and latest applications of digital image correlation in stress and strain measurement[J]. Imaging Science and Photochemistry,2017,35(2):193-198(in Chinese). doi: 10.7517/j.issn.1674-0475.2017.02.193
    [13] COMER A J, KATNAM K B, STANLEY W F. Characterising the behavior of composite single lap bonded joints using digital image correlation[J]. International Journal of Adhesion & Adhesives,2013,40(40):215-223.
    [14] KASHFUDDOJA M, RAMJI M. Whole-field strain analysis and damage assessment of adhesively bonded patch repair of CFRP laminates using 3D-DIC and FEA[J]. Composites Part B: Engineering,2013,53(5):46-61.
    [15] 张文东, 樊俊铃, 陈莉, 等. 二维数字图像相关法在准静态拉伸实验中的应用[J]. 应用力学学报, 2018, 35(5):138-144, 267.

    ZHANG Wendong, FAN Junling, CHEN Li, et al. Study on the application of two-dimensional digital image correlation method in quasistatic tension test[J]. Chinese Journal of Applied Mechanics,2018,35(5):138-144, 267(in Chinese).
    [16] 全国纤维增强塑料标准化技术委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014 [S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People’s Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/T 3354—2014[S]. Beijing: China Standards Press, 2015(in Chinese).
    [17] 王曼漪, 胡其高, 陈丁丁, 等. DIC方法位移与应变测试结果可靠性实验研究[C]//2017第26届全国结构工程学术会议论文集(第Ⅲ册), 2017: 628-633.

    WANG Manyi, HU Qigao, CHEN Dingding, at el. Experimental research of reliability of DIC method in the displacement and strain tests[C]//The 26th Session of the National Construction Engineering Academic Conference Proceedings, The First Ⅲ Copies, 2017: 628-633(in Chinese).
    [18] SUNG N, SUH N. Effect of fiber orientation on friction and wear of fiber reinforced polymeric composites[J]. Wear,1979,53(1):129-141. doi: 10.1016/0043-1648(79)90224-2
    [19] SCHON J. Coefficient of friction of composite delamination surfaces[J]. Wear,2000,237(1):77-89. doi: 10.1016/S0043-1648(99)00315-4
    [20] BING Q , SUN C T . Effect of compressive transverse normal stress on mode II fracture toughness in polymeric composites[J]. International Journal of Fracture, 2007, 145(2):89-97.
    [21] 陈建霖, 励争, 储鹏程. 大开口复合材料层合板强度破坏研究[J]. 力学学报, 2016, 48(6):1326-1333. doi: 10.6052/0459-1879-16-169

    CEHEN Jianlin, LI Zheng, CHU Pengcheng. Strength analysis of fiber reinforced composite laminates with big cutous[J]. Chinses Journal of Theoretical and Applied Mechanics,2016,48(6):1326-1333(in Chinese). doi: 10.6052/0459-1879-16-169
    [22] 王刚, 贾普荣, 黄涛, 等. 含切口复合材料层合板拉伸应变集中与失效分析[J]. 材料工程, 2018, 2(46):134-141.

    WANG Gang, JIA Purong, HUANG Tao, at el. Strain concentration and failure analysis of notched composite laminates under tensile loading[J]. Journal of Materials Engineering,2018,2(46):134-141(in Chinese).
    [23] 冯威, 徐绯, 袁佳雷. 双斜接修补复合材料层合版的拉伸行为及影响因素[J]. 复合材料学报, 2019, 36(6):1421-1427.

    FENG Wei, XU Fei, YUAN Jialei. Investigation on tensile behavior and effect factor analysis of double scarf-repaired composite laminates[J]. Acta Materiae Compositae Sinica,2019,36(6):1421-1427(in Chinese).
    [24] HASHIN Z, ROTEM A. A fatigue failure criteri-on for fiber reinforced materials[J]. Journal of Composite Materials,1973,7(4):448-464. doi: 10.1177/002199837300700404
    [25] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1981,48(4):846. doi: 10.1115/1.3157744
    [26] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials,1987,21(9):834-855. doi: 10.1177/002199838702100904
    [27] TSERPES K I, LABEAS G, PAPANIKOS P, et al. Strength prediction of bolted joints in graphite/epoxy composite laminates[J]. Composites Part B: Engineering,2002,33(7):521-529. doi: 10.1016/S1359-8368(02)00033-1
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1490
  • HTML全文浏览量:  180
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-20
  • 录用日期:  2019-08-13
  • 网络出版日期:  2019-08-22
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回