留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新型测试装置的网孔板层开孔率对纤维厚度方向渗透率的影响

张浩 李书欣 王继辉 杨斌 颜庆岩 吴明伟

张浩, 李书欣, 王继辉, 等. 基于新型测试装置的网孔板层开孔率对纤维厚度方向渗透率的影响[J]. 复合材料学报, 2020, 37(5): 1175-1183. doi: 10.13801/j.cnki.fhclxb.20190807.001
引用本文: 张浩, 李书欣, 王继辉, 等. 基于新型测试装置的网孔板层开孔率对纤维厚度方向渗透率的影响[J]. 复合材料学报, 2020, 37(5): 1175-1183. doi: 10.13801/j.cnki.fhclxb.20190807.001
ZHANG Hao, LI Shuxin, WANG Jihui, et al. Influence of ratio of hole area for mesh plate layer on through-thickness permeability based on a new designed test bench[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1175-1183. doi: 10.13801/j.cnki.fhclxb.20190807.001
Citation: ZHANG Hao, LI Shuxin, WANG Jihui, et al. Influence of ratio of hole area for mesh plate layer on through-thickness permeability based on a new designed test bench[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1175-1183. doi: 10.13801/j.cnki.fhclxb.20190807.001

基于新型测试装置的网孔板层开孔率对纤维厚度方向渗透率的影响

doi: 10.13801/j.cnki.fhclxb.20190807.001
基金项目: 中央高校基本科研业务费专项资金(2019-zy-037)
详细信息
    通讯作者:

    王继辉,博士,教授,博士生导师,研究方向为聚合物基复合材料 E-mail:jhwang@whut.edu.cn

  • 中图分类号: TB332

Influence of ratio of hole area for mesh plate layer on through-thickness permeability based on a new designed test bench

  • 摘要: 纤维预成型体厚度方向渗透率的准确表征是液体模塑成型工艺制备大厚度复合材料计算机优化的关键。网孔板层是布置在试样上下表面、用于控制纤维厚度并防止纤维变形的刚性构件,其开孔率是纤维厚度方向渗透率Kz测量中的重要表征参数。本文首先通过实验对用于控制纤维预成型体厚度的垫圈进行校正;然后在排除纤维体积分数误差的前提下,通过金属网增大网孔板层的开孔率,测量缎纹织物SW220C-100b在不同压力和纤维体积分数下的Kz,提出有效计算面积的概念并得到其变化规律;最后,基于测试结果,研究注射压力和纤维体积分数对Kz的影响。结果表明:有效计算面积随着注射压力和纤维体积分数的增加而减小;纤维体积分数的增大会减小织物的Kz值,网孔板层开孔率的增大会减小注射压力对Kz的影响。

     

  • 图  1  缎纹织物(SF)局部放大图

    Figure  1.  Partial enlarged view of stain fabric (SF)

    图  2  渗透率测试装置原理示意图

    Figure  2.  Device schematic of permeability testing device

    图  3  自制渗透率测试模具和垫圈组工作示意图

    Figure  3.  Homemade mould and schematic diagram of shims

    图  4  实验机测量垫圈厚度

    Figure  4.  Testing machine measuring thickness of shims

    图  5  穿孔板实物图

    Figure  5.  Physical drawing of perforated board

    图  6  Imagej计算穿孔板孔隙度流程图

    Figure  6.  Flow chart for calculating porosity of perforated plate by Imagej

    图  7  理想状态和实际操作下液体的流动示意图

    Figure  7.  Schematic diagrams of flow of liquid under ideal condition and practical operation

    图  8  两种网孔板层开孔率和不同注射压力下织物厚度方向渗透率Kz的测量值

    Figure  8.  Measurement of through-thickness permeability Kz of SF under two different ratios of hole area and different injection pressures (Vf—Fiber volume fraction)

    图  9  纤维体积分数和注射压力对织物有效计算面积的影响

    Figure  9.  Effects of fiber volume fraction and injection pressure on effective calculated area of SF (ΔP—Pressure)

    图  10  纤维体积分数对织物厚度方向渗透率Kz的影响

    Figure  10.  Effect of fiber volume fraction on the through-thickness permeability Kz of SF

    图  11  注射压力对织物厚度方向渗透率Kz的影响

    Figure  11.  Effect of injection pressure on through-thickness permeability Kz of SF

    图  12  织物厚度方向渗透率Kz在不同纤维体积分数下的数值范围

    Figure  12.  Numerical range of through-thickness permeability Kz of SF under different fiber volume fractions

    表  1  增强材料和流体相关参数

    Table  1.   Relevent parameters of reinforcements and liquid

    TypeNameAreal density/
    (g·m−2)
    Volume density/
    (kg·m−3)
    SFSW220C-100b2202 550
    Silicone oilPMX-200960
    下载: 导出CSV

    表  2  17层缎纹织物厚度方向渗透率Kz测试实验分组

    Table  2.   Experimental groups of through-thickness permeability Kz testing for SF with 17 layers

    Fiber volume
    fraction/vol%
    Pressure/MPa
    With metal mesh460.050.10.150.20.250.3
    480.1
    500.050.10.150.20.250.3
    520.1
    540.050.10.150.20.250.3
    Without metal mesh460.050.10.150.20.250.3
    480.1
    500.050.10.150.20.250.3
    520.1
    540.050.10.150.20.250.3
    下载: 导出CSV

    表  3  试验机测试垫圈厚度

    Table  3.   Thickness values of shims tested in testing machine

    Sequence numbersABCDEFG
    Thickness/mm2.9444.9331.8650.1810.1830.1810.187
    Sequence numbersHIJKLMN
    Thickness/mm0.2310.1810.1864.9180.23327.9449.986
    下载: 导出CSV

    表  4  垫圈组名义厚度和实验机所测厚度

    Table  4.   Nominal thickness and thickness measured by experimental machine of shims group

    Nominal thickness/mmSelected shimsActual thickness/mmError value/mmPercentage error/%
    21.7008BCKN21.8030.10220.47
    14.3570ABDEFGHIJKL14.5590.20201.40
    10.7750EGJLN10.7930.01800.17
    8.2971ABGL8.283−0.0141−0.17
    6.7821CK6.710−0.0721−1.06
    5.8739DEFHIK5.9550.08111.38
    4.5070ADEFGHIJL4.6340.17203.82
    3.6698ADEFI3.624−0.04581.25
    2.8759CDFHJL2.8770.00110.04
    1.0988DEFGIJ1.1320.03323.02
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):12-12.

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):12-12(in Chinese).
    [2] DING A, LI S, WANG J, et al. A new path-dependent constitutive model predicting cure-induced distortions in composite structures[J]. Composites Part A: Applied Science and Manufacturing,2017,95:183-196. doi: 10.1016/j.compositesa.2016.11.032
    [3] DING A, LI S, WANG J, et al. A new analytical solution for spring-in of curved composite parts[J]. Composites Science and Technology,2017,142:30-40. doi: 10.1016/j.compscitech.2017.01.024
    [4] ERMANNI P, FRATTA C D, TROCHU F. Molding: Liquid composite molding (LCM)[M]//NICOLAIS L. Wiley Encyclopedia of Composites. John Wiley & Sons, Inc., 2011.
    [5] 邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2):1-9.

    XING Liying, JIANG Shicai, ZHOU Zhenggang. Progress of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2013,30(2):1-9(in Chinese).
    [6] 张默. 真空辅助树脂成型实时监测技术研究[D]. 上海: 东华大学, 2011.

    ZHANG Mo. Study on real-time monitoring of vacuum-assisted resin transfer mplding[D]. Shanghai: Donghua University, 2011(in Chinese).
    [7] 朱锡, 黄若波, 石勇, 等. 安静型夹芯复合材料舵设计及其力学性能分析[J]. 海军工程大学学报, 2007, 19(4):90-93,110. doi: 10.3969/j.issn.1009-3486.2007.04.022

    ZHU Xi, HUANG Ruobo, SHI Yong, et al. Design and mechanical analysis of quiet type of sandwich composite rudder[J]. Journal of Naval University of Engineering,2007,19(4):90-93,110(in Chinese). doi: 10.3969/j.issn.1009-3486.2007.04.022
    [8] 张盛, 祖磊, 王继辉, 等. VIMP工艺中纤维增强体Z向渗透性分析[J]. 玻璃钢/复合材料, 2014(s1):160-164.

    ZHANG Sheng, ZU Lei, WANG Jihui, et al. Analysis of the Z direction permeability of the fiber reinforcement in VIMP[J]. Fiber Reinforced Plastics/Composites,2014(s1):160-164(in Chinese).
    [9] 张璇, 白国娟, 王星星, 等. 三维织物厚度方向渗透率研究[J]. 中国胶粘剂, 2017, 26(5):26-29.

    ZHANG Xuan, BAI Guojuan, WANG Xingxing, et al. Study on the thickness-permeability of three-dimensional fabric[J]. China Adhesives,2017,26(5):26-29(in Chinese).
    [10] 耿奕, 蒋金华, 陈南梁. 经编四轴向玻璃纤维织物的渗透行为和渗透率[J]. 纺织学报, 2017, 38(10):49-56.

    GENG Yi, JIANG Jinhua, CHEN Nanliang. Permeation behavior and permeability of warp-knitted quadri-axial glass fiber fabric[J]. Journal of Textile Research,2017,38(10):49-56(in Chinese).
    [11] 蒋金华, 汪泽幸, 陈南梁. LCM中织物结构对3D渗透性的影响[J]. 玻璃钢/复合材料, 2012(5):9-18. doi: 10.3969/j.issn.1003-0999.2012.05.002

    JIANG Jinhua, WANG Zexing, CHEN Nanliang. Effects of fabric structure on 3D permeability in LCM[J]. Fiber Reinforced Plastics/Composites,2012(5):9-18(in Chinese). doi: 10.3969/j.issn.1003-0999.2012.05.002
    [12] 张娜, 赵子为, 刘春太, 等. 风力发电机叶片用玻璃纤维织物的渗透率[J]. 复合材料学报, 2013, 30(4):245-249.

    ZHANG Na, ZHAO Ziwei, LIU Chuntai, et al. Permeability of glass fabric for wind turbineblades[J]. Acta Materiae Compositae Sinica,2013,30(4):245-249(in Chinese).
    [13] 董梦瑶, 鲁智力, 吕广超, 等. 喷涂碳纳米纤维对玻纤预制体渗透率的影响[J]. 玻璃钢/复合材料, 2016(11):100-106. doi: 10.3969/j.issn.1003-0999.2016.11.018

    DONG Mengyao, LU Zhili, LV Guangchao, et al. Effects of the glass fiber preforms' permeability for spraying carbon nanofiber[J]. Fiber Reinforced Plastics/Composites,2016(11):100-106(in Chinese). doi: 10.3969/j.issn.1003-0999.2016.11.018
    [14] 刘刚, 张朋, 李伟东, 等. 结构化增韧层增韧RTM复合材料预成型体的渗透特性[J]. 复合材料学报, 2014, 31(1):73-80. doi: 10.3969/j.issn.1000-3851.2014.01.010

    LIU Gang, ZHANG Peng, LI Weidong, et al. Infiltration characteristics of the preform of structured toughening layer toughening RTM composite[J]. Acta Materiae Compositae Sinica,2014,31(1):73-80(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.010
    [15] WANG C, BAI G, WANG Y. et al. Permeability tests of fiber fabrics in the vacuum assisted resin transfer molding process[J]. Applied Composite Materials,2015,22(4):363-375. doi: 10.1007/s10443-014-9412-5
    [16] OUAGNE P, OUAHBI T, PARK C H, et al. Continuous measurement of fiber reinforcement permeability in the thickness direction: Experimental technique and validation[J]. Composites Part B: Engineering,2013,45(1):609-618. doi: 10.1016/j.compositesb.2012.06.007
    [17] KLUNKER F, DANZI M, ERMANNI P. Fiber deformation as a result of fluid injection: modeling and validation in the case of saturated permeability measurements in through thickness direction[J]. Journal of Composite Materials,2015,49(9):1091-1105. doi: 10.1177/0021998314530766
    [18] 王燕辉, 吴晓青. 单胞法预测玻璃纤维平纹织物的渗透率[J]. 纤维复合材料, 2014(3):14-16.

    WANG Yanhui, WU Xiaoqing. Prediction permeability of glass fiber plain fabric by unit cell method[J]. Fiber Composites,2014(3):14-16(in Chinese).
    [19] ANTONUCCI V, ESPOSITO M, RICCIARDI M R, et al. Permeability characterization of stitched carbon fiber preforms by fiber optic sensors[J]. Express Polymer Letters,2011,5(12):1075-1084. doi: 10.3144/expresspolymlett.2011.105
    [20] XIAO X, LONG A, ZENG X. Through-thickness permeability modelling of woven fabric under out-of-plane deformation[J]. Journal of Materials Science,2014,49(21):7563-7574. doi: 10.1007/s10853-014-8465-z
    [21] 阳小林, 晏石林, 杨云飞. 玻璃纤维平面织物法向渗透率实验研究[C]//第十五届全国复合材料学术会议. 哈尔滨: 中国力学学会, 2008: 1092-1096.

    YANG Xiaolin, YAN Shilin, YANG Yunfei. Experimental study on normal permeability of glass fiber plane fabric[C]//The 15th National Academic Conference on Composite Materials. Harbin: Chinese Society of Theoretical and Applied Mechanics, 2008: 1092-1096 (in Chinese).
    [22] 简抗抗, 张佐光, 顾轶卓, 等. 不同纤维堆积状态下饱和渗透率实验研究[J]. 复合材料学报, 2006, 23(1):1-11. doi: 10.3321/j.issn:1000-3851.2006.01.001

    JIAN Kangkang, ZHANG Zuoguang, GU Yizhuo, et al. Experimental research of saturated permeability with different fiber stacking states[J]. Acta Materiae Compositae Sinica,2006,23(1):1-11(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.01.001
    [23] 李香林, 王继辉, 倪爱清, 等. 液体模塑成型工艺用纤维织物厚度方向饱和渗透率的预测模型[J]. 复合材料学报, 2019, 36(6):1428-1437.

    LI Xianglin, WANG Jihui, NI Aiqing, et al. Prediction model of through-thickness saturated permeability of fabric for liquid composite molding[J]. Acta Materiae Compositae Sinica,2019,36(6):1428-1437(in Chinese).
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  130
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 录用日期:  2019-07-21
  • 网络出版日期:  2019-08-08
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回