留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag-ZnO/生物质炭纳米复合材料的制备及协同可见光催化性能

黄慧玲 张隐 甘露 潘明珠

黄慧玲, 张隐, 甘露, 等. Ag-ZnO/生物质炭纳米复合材料的制备及协同可见光催化性能[J]. 复合材料学报, 2020, 37(5): 1148-1155. doi: 10.13801/j.cnki.fhclxb.20190801.001
引用本文: 黄慧玲, 张隐, 甘露, 等. Ag-ZnO/生物质炭纳米复合材料的制备及协同可见光催化性能[J]. 复合材料学报, 2020, 37(5): 1148-1155. doi: 10.13801/j.cnki.fhclxb.20190801.001
HUANG Huiling, ZHANG Yin, GAN Lu, et al. Preparation and synergetic visible-light photocatalysis properties of Ag-ZnO/Biochar nanocomposites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1148-1155. doi: 10.13801/j.cnki.fhclxb.20190801.001
Citation: HUANG Huiling, ZHANG Yin, GAN Lu, et al. Preparation and synergetic visible-light photocatalysis properties of Ag-ZnO/Biochar nanocomposites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1148-1155. doi: 10.13801/j.cnki.fhclxb.20190801.001

Ag-ZnO/生物质炭纳米复合材料的制备及协同可见光催化性能

doi: 10.13801/j.cnki.fhclxb.20190801.001
基金项目: 国家自然科学基金(31670556);江苏省“青蓝工程”;南京林业大学杰出青年项目(NLJQ2015-02)
详细信息
    作者简介:

    黄慧玲(1992-),女,硕士研究生。主要研究方向为纳米氧化锌功能应用

    张隐(1994-),女,硕士研究生。主要研究方向为生物质纳米复合材料

    通讯作者:

    潘明珠,博士,教授,研究方向为先进生物质复合材料 Email:mzpan@njfu.edu.cn

  • 中图分类号: TB332

Preparation and synergetic visible-light photocatalysis properties of Ag-ZnO/Biochar nanocomposites

  • 摘要: 以醋酸锌(Zn(CH3COO)2·2H2O)为锌源、硝酸银(AgNO3)为掺杂源、纤维素纳米晶体(Cellulose nanocrystal, CNC)为生物模板,通过溶胶-凝胶法结合碳化处理,制备了Ag-ZnO/生物质炭(Biochar)复合材料。采用TEM、XRD、BET、UV-Vis DRS对所制得的Ag-ZnO/Biochar复合材料进行表征。以亚甲基蓝(MB)为模型污染物,评价Ag-ZnO/Biochar复合材料在可见光源照射下的光催化性能,进一步阐明其光催化机制。结果表明:碳化后纳米ZnO仍保持良好的分散性,球形Ag纳米粒子均匀分散在ZnO表面,形成Ag-ZnO/Biochar三元复合材料。与Ag-ZnO和ZnO/Biochar复合材料相比,Ag-ZnO/Biochar复合材料在可见光下的光催化降解率显著提高。这是由于生物质炭赋予复合体系良好的吸附性能,使MB的光催化降解反应持续发生;而Ag纳米粒子的表面等离子体共振(Surface plasmon resonance, SRP)效应则增强了复合体系在可见光区的吸收。其中,当AgNO3、CNC、Zn(CH3COO)2·2H2O的质量比为0.01:0.25:1时,制得的Ag-ZnO/Biochar复合材料在可见光下具有最佳的光吸收性能和MB降解效率:室温条件下,黑暗中吸附30 min,再用可见光照射120 min,即可达到99%的MB降解率,显著高于Ag-ZnO(约23%)和ZnO/Biochar复合材料(约64%)。

     

  • 图  1  Ag-ZnO/Biochar复合材料的制备流程示意图

    Figure  1.  Schematic process of the preparation of Ag-ZnO/Biochar composites

    图  2  Ag-ZnO/Biochar复合材料的TEM图像

    Figure  2.  TEM images of Ag-ZnO/Biochar composites

    图  3  Ag-ZnO/Biochar复合材料的XRD图谱

    Figure  3.  XRD patterns of Ag-ZnO/Biochar composites

    图  4  Ag-ZnO/Biochar复合材料的N2吸附-脱附等温曲线

    Figure  4.  N2 adsorption/desorption isotherms curves of Ag-ZnO/Biochar composites

    图  5  Ag-ZnO/Biochar复合材料的UV-Vis 漫反射图谱

    Figure  5.  UV-Vis diffuse reflectance spectra of Ag-ZnO/Biochar composites

    图  6  Ag-ZnO/Biochar复合材料对亚甲基蓝(MB)的降解率及其催化机制:(a) MB的降解率曲线;(b) MB的降解率实物图;(c) 光催化机制

    Figure  6.  Degradation rate of methylene blue (MB) under visible-light by Ag-ZnO/Biochar composites: (a) Degradation curve of MB; (b) Degradation of MB; (c) Photocatalytic mechanism

    表  1  Ag-ZnO/Biochar复合材料配比

    Table  1.   Parameters for Ag-ZnO/Biochar composites preparation

    SampleMass ratio Ag(NO)3
    CNC∶Zn(CH3COO)2·2H2O
    Ag-ZnO0.03∶0∶1
    ZnO/Biochar0∶0.25∶1
    Ag0.01-ZnO/Biochar0.01∶0.25∶1
    Ag0.03-ZnO/Biochar0.03∶0.25∶1
    Ag0.05-ZnO/Biochar0.05∶0.25∶1
    下载: 导出CSV

    表  2  Ag-ZnO/Biochar复合材料的比表面积及孔结构

    Table  2.   Specific surface area and pore texture of Ag-ZnO/Biochar composites

    SampleSurface Area/
    (m2·g-1)
    Pore volume/
    (cm3·g-1)
    Average pore diameter /nm
    ZnO/Biochar35.510.055188.99
    Ag0.01-ZnO/Biochar53.780.059115.66
    Ag0.03-ZnO/Biochar11.310.056225.58
    Ag0.05-ZnO/Biochar28.300.070174.41
    下载: 导出CSV
  • [1] LIU Y, HU Y, ZHOU M, et al. Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced gra-phene oxide sheets with improved photoactivity for the decolorization of dyes under visible light[J]. Applied Catalysis B: Environmental,2012,125:425-431. doi: 10.1016/j.apcatb.2012.06.016
    [2] YU L, YE Z, LI Z, et al. Photocatalytic degradation mechanism of tetracycline by Ag@ZnO/C core-shell plasmonic photocatalyst under visible light[J]. Nano,2018,13(6):1850065. doi: 10.1142/S1793292018500650
    [3] KHEIRABADI M, SAMADI M, ASADIAN E, et al. Well-designed Ag/ZnO/3D graphene structure for dye removal: adsorption, photocatalysis and physical separation capabilities[J]. Journal of Colloid and Interface Science,2019,537:66-78. doi: 10.1016/j.jcis.2018.10.102
    [4] PAWAR R C, CHO D, LEE C S. Fabrication of nanocomposite photocatalysts from zinc oxide nanostructures and reduced graphene oxide[J]. Current Applied Physics,2013,13(4):S50-S57.
    [5] QIN Y, ZHOU Y, LI J, et al. Fabrication of hierarchical core-shell Au@ZnO heteroarchitectures initiated by heteroseed assembly for photocatalytic applications[J]. Journal of Colloid & Interface Science,2014,418:171-177.
    [6] GU C, CHENG C, HUANG H, et al. Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals[J]. Crystal Growth & Design,2009,9(7):3278-3285.
    [7] HU J, YUAN H, LI P, et al. Synthesis and photocatalytic activity of ZnO-Au25 nanocomposites[J]. Science China Chemistry,2016,59:277-281. doi: 10.1007/s11426-015-5487-6
    [8] OVALLE S A, CARRILLO V S, BLANCO C, et al. Controlled synthesis of ZnO particles on the surface of natural cellulosic fibers: effect of concentration, heating and sonication[J]. Cellulose,2015,22(3):1841-1852. doi: 10.1007/s10570-015-0620-4
    [9] 刘胜楠, 黄六莲, 肖禾, 等. 海绵状Ag2O/ZnO复合光催化剂的制备及对甲醛的可见光降解[J]. 复合材料学报, 2019, 36(7): 1737-1745.

    LIU Shengnan, HUANG Liulian, XIAO He, et al. Fabrication of spong-like Ag2O/ZnO composite photocatalysts and photocatalytic degradation for formaldehyde under visible light irradiation[J]. Acta Materiae Compositae Sinica, 2019, 36(7): 1737-1745(in Chinese).
    [10] SANDESH Y S, MOO H C. Facile electro-chemical assisted synthesis of ZnO/graphene nanosheets with enhanced photocatalytic activity[J]. RCS Advance,2015,5:97788-97797.
    [11] DILLIP G R, BANERJEE A N, ANITHA V C, et al. Anchoring mechanism of ZnO nanoparticles on graphitic carbon nanofiber surfaces through a modified co-precipitation method to improve interfacial contact and photocatalytic performance[J]. ChemPhysChem,2015,16(15):3214-3232. doi: 10.1002/cphc.201500529
    [12] SURYA P A, HEM R P, JUN H K, et al. One pot synthesis and characterization of Ag-ZnO/g-C3N4 photocatalyst with improved photoactivity and antibacterial properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2015,482:477-484. doi: 10.1016/j.colsurfa.2015.07.003
    [13] YU X, LI Z, DANG K, et al. Enhanced photocatalytic activity of Ag-ZnO/RGO nanocomposites for removal of methylene blue[J]. Journal of Materials Science: Materials in Electronics,2018,29(10):8729-8737. doi: 10.1007/s10854-018-8889-3
    [14] JIANG L, GAO L. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity[J]. Materials Chemistry and Physics,2005,91(2-3):313-316. doi: 10.1016/j.matchemphys.2004.11.028
    [15] XUE J, MA S, ZHOU Y, et al. Synthesis of Ag/ZnO/C plasmonic photocatalyst with enhanced adsorption capacity and photocatalytic activity to antibiotics[J]. RSC Advance,2015,5(24):18832-18840. doi: 10.1039/C5RA00217F
    [16] SHE P, XU K, YIN S, et al. Bioinspired self-standing macroporous Au/ZnO sponges for enhanced photocatalysis[J]. Journal of Colloid and Interface Science,2018,514:40-48. doi: 10.1016/j.jcis.2017.12.003
    [17] GU H, YANG Y, TIAN J, et al. Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction[J]. Applied Materials & Interfaces,2013,5(14):6762-6768.
    [18] YU C, YANG K, XIE Y, et al. Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability[J]. Nanoscale,2013,5(5):2142-2151. doi: 10.1039/c2nr33595f
    [19] KURIAKOSE S, CHOUDHARY V, SATPATI B, et al. Facile synthesis of Ag-ZnO hybrid nanospindles for highly efficient photocatalytic degradation of methyl orange[J]. Physical Chemistry Chemical Physics,2014,16:17560-17568. doi: 10.1039/C4CP02228A
    [20] CHEN X, LI Y, PAN X, et al. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts[J]. Nature Communications,2016,7:12273. doi: 10.1038/ncomms12273
    [21] QI K, CHENG B, YU J, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds,2017,727:792-820. doi: 10.1016/j.jallcom.2017.08.142
    [22] GUO H, KE Y, WANG D, et al. Efficient adsorption and photocatalytic degradation of Congo red onto hydrothermally synthesized NiS nanoparticles[J]. Journal of Nanoparticle Research,2013,15:1475. doi: 10.1007/s11051-013-1475-y
    [23] 张隐, 黄慧玲, 魏留洋, 等. 生物质炭/ZnO复合材料的制备及其吸附-光催化性能[J]. 复合材料学报, 2019, 36(9): 2187-2195.

    ZHANG Yin, HUANG Huiling, WEI Liuyang, et al. Preparation and adsorption-photocatalysis properties of biochar/ZnO composites[J]. Acta Materiae Compositae Sinica, 2019, 36(9): 2187-2195(in Chinese).
    [24] ZHAO G, DING C, PAN M, et al. Fabrication of NCC-SiO2 hybrid colloids and its application on waterborne poly(acrylic acid) coatings[J]. Progress in Organic Coatings,2018,122:88-95. doi: 10.1016/j.porgcoat.2018.05.014
    [25] SUSAN A, MANSOR A, MAHNAZ M, et al. Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites[J]. Bioresources,2013,8(2):1841-1851.
    [26] ZHU H, SHEN F, LUO W, et al. Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries[J]. Nano Energy,2017,33:37-44. doi: 10.1016/j.nanoen.2017.01.021
    [27] JACHE B, NEUMANN C, JORG B, et al. Towards commercial products by nanocasting: characterization and lithium insertion properties of carbons with a macroporous, interconnected pore structure[J]. Journal of Materials Chemistry,2012,22(21):10787-10794. doi: 10.1039/c2jm30787a
    [28] KHANITTA I, PONGSATON A, SUMETHA S, et al. Effect of Ag loading on activated carbon doped ZnO for bisphenol A degradation under visible light[J]. Advanced Powder Technology,2018,29:2608-2615. doi: 10.1016/j.apt.2018.07.006
    [29] ZHOU M, GAO X, HU Y, et al. Uniform hamburger-like mesoporous carbon-incorporated ZnO nanoarchitectures: One-pot solvothermal synthesis, high adsorption and visible-light photocatalytic decolorization of dyes[J]. Applied Catalysis B: Environmental,2013,138-139:1-8. doi: 10.1016/j.apcatb.2013.02.029
    [30] MA S, XUE J, ZHOU Y, et al. A facile route for the preparation of ZnO/C composites with high photocatalytic activity and adsorption capacity[J]. CrystEngComm,2014,16(21):4478. doi: 10.1039/C4CE00110A
    [31] YU H Y, CHEN G Y, WANG Y B, et al. A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity[J]. Cellulose,2015,22(1):261-273. doi: 10.1007/s10570-014-0491-0
    [32] ANSARI S A, KHAN M M, ANSARI M O, et al. Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO nanocomposite[J]. Journal of Physical Chemistry C,2013,117(51):27023-27030. doi: 10.1021/jp410063p
    [33] HOSSEINI F, KASAEIAN A, POURFAYAZ F, et al. Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol[J]. Materials Science in Semiconductor Processing,2018,83:175-185. doi: 10.1016/j.mssp.2018.04.042
    [34] QI K Z, CHENG B, YU J G, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds,2017,727(8):792-82.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  930
  • HTML全文浏览量:  173
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 录用日期:  2019-07-13
  • 网络出版日期:  2019-08-01
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回