留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SEM环境下纤维推出技术结合电子束云纹技术表征复合材料界面细观力学性能

郎风超 朱静 李云芳 潘俊臣 姜爱峰 杨诗婷 邢永明

郎风超, 朱静, 李云芳, 等. SEM环境下纤维推出技术结合电子束云纹技术表征复合材料界面细观力学性能[J]. 复合材料学报, 2020, 37(6): 1383-1389. doi: 10.13801/j.cnki.fhclxb.20190712.001
引用本文: 郎风超, 朱静, 李云芳, 等. SEM环境下纤维推出技术结合电子束云纹技术表征复合材料界面细观力学性能[J]. 复合材料学报, 2020, 37(6): 1383-1389. doi: 10.13801/j.cnki.fhclxb.20190712.001
LANG Fengchao, ZHU Jing, LI Yunfang, et al. Characterization of interfacial meso-mechanical properties of composites using fiber push-out under SEM combing with electron beam moiré method[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1383-1389. doi: 10.13801/j.cnki.fhclxb.20190712.001
Citation: LANG Fengchao, ZHU Jing, LI Yunfang, et al. Characterization of interfacial meso-mechanical properties of composites using fiber push-out under SEM combing with electron beam moiré method[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1383-1389. doi: 10.13801/j.cnki.fhclxb.20190712.001

SEM环境下纤维推出技术结合电子束云纹技术表征复合材料界面细观力学性能

doi: 10.13801/j.cnki.fhclxb.20190712.001
基金项目: 国家自然科学基金(11762013;11562016;11862021);内蒙古工业大学科学研究项目(ZZ201812;ZY201818)
详细信息
    通讯作者:

    邢永明,博士,教授,博士生导师,研究方向为复合材料细观力学 E-mail:xym@imut.edu.cn

  • 中图分类号: TB333

Characterization of interfacial meso-mechanical properties of composites using fiber push-out under SEM combing with electron beam moiré method

  • 摘要: 纤维推出技术是研究复合材料界面细观力学性能的常用方法。本文将该方法在SEM环境下与电子束云纹技术相结合开发一套基于SEM环境下的纤维推出实验系统。利用该系统测试了SiC/Ti-15-3复合材料的界面剪切强度、摩擦应力、摩擦系数及残余应力分布等细观力学性能。结果表明:对于厚度为500 μm的SiC/Ti-15-3复合材料界面剪切强度为35 MPa,摩擦应力为32.8 MPa,纤维与界面间的摩擦系数为0.082,径向残余应力为−400 MPa。该系统在SEM环境可以实现直径为几微米的纤维推出,扩展了纤维推出技术的应用范围,提高了纤维推出过程的对准精度,减小了测量误差。并且与电子束云纹技术相结合,实时测量纤维推出后界面残余应力分布情况,为复合材料界面的设计、评估及优化提供必要的实验方法。

     

  • 图  1  纤维推出原理

    Figure  1.  Illustration of fiber push-out process

    图  2  压头

    Figure  2.  Indenter

    图  3  样品托示意图

    Figure  3.  Sample holder schematic diagram

    图  4  数据采集系统

    Figure  4.  Data collection system

    图  5  SEM环境下纤维推出系统

    Figure  5.  Fiber push-out system under SEM

    图  6  光栅形貌图

    Figure  6.  Topography of grating (1 915 lines/mm)

    图  7  纤维推出后SiC/Ti-15-3复合材料云纹图

    Figure  7.  Moiré fringe patter of SiC/Ti-15-3 composite after pushing-out fiber ((a) Moiré fringe patter of u field;(b) Moiré fringe of v field)

    图  8  SiC/Ti-15-3复合材料云纹图及应变场

    Figure  8.  Moiré fringes and strain field of SiC/Ti-15-3 composite ((a) u field moire fringe; (b) v field moire fringe; (c) Strain field of εxx; (d) Strain field of εyy)

    图  9  SiC/Ti-15-3复合材料残余应变沿图8中ab分布

    Figure  9.  Distribution of residual strain along ab(Fig.8) of SiC/Ti-15-3 composite

    图  10  SiC/Ti-15-3复合材料径向残余应力${\sigma _{yy}}$沿图8中ab的分布

    Figure  10.  Distribution of radial residual stress along ab in Fig.8 of SiC/Ti-15-3 composite

    图  11  SiC/Ti-15-3复合材料载荷-位移曲线

    Figure  11.  Load-displacement curves of SiC/Ti-15-3 composite

    图  12  SiC/Ti-15-3复合材料纤维推出过程示意图

    Figure  12.  Schematic representation for progressive debonding in push-out test for SiC/Ti-15-3 composite ((a) No deboding occurs at low load level; (b) Debonding is in progress with the increase of applied load; (c) Fiber is push out of the matrix with full debonding)

    图  13  脱粘载荷Pd与SiC/Ti-15-3复合材料试样厚度关系

    Figure  13.  Curve of debonding force Pd versus specimen thickness of SiC/Ti-15-3 composite

    图  14  最大载荷Pmax与SiC/Ti-15-3复合材料试样厚度的关系

    Figure  14.  Curve of maximum force Pmaxversus specimen thickness of SiC/Ti-15-3 composite

    表  1  SiC/Ti-15-3复合材料各组份性能参数[15]

    Table  1.   Performance of fiber, interface and matrix for SiC/Ti-15-3 composites[15]

    FiberMatrix
    Elastic modulus/GPa30090
    Passion’s ratio0.170.33
    Thermal expansion/10−6 K−12.67.6
    下载: 导出CSV
  • [1] MANDELL J F, CHEN J H, MCGARRY F J. A microdebonding test for in situ assessment of fiber/matrix bond strength in composite materials[J]. International Journal of Adhesion and Adhesives,1980,1(1):40-44. doi: 10.1016/0143-7496(80)90033-0
    [2] YOU J H, LUTZ W, GERGER H, et al. Fiber push-out study of a copper matrix composite with an engineered interface: Experiments and cohesive element simulation[J]. International Journal of Solids and Structures,2009,46(25-26):4277-4286. doi: 10.1016/j.ijsolstr.2009.08.021
    [3] KALTON A F, HOWARD S J, CLYNE T W. Measurement of interfacial fracture energy by single fiber push-out testing and its application to the titanium-silicon carbide system[J]. Acta Meterialia,1998,46(9):3175-3189. doi: 10.1016/S1359-6454(98)00009-3
    [4] ZHOU X F, WAGNER H D, NUTT S R. Interfacial properties of polymer composites measured by push-out and fragmentation tests[J]. Composites Part A: Applied Science and Manufacturing,2001,32(11):1543-1551. doi: 10.1016/S1359-835X(01)00018-5
    [5] TANDON G P, PAGANO N J. Micromechanical analysis of the fiber push-out and re-push test[J]. Composites Science and Technology,1998,58(11):1709-1725. doi: 10.1016/S0266-3538(98)00037-2
    [6] CHANDRA N, ANANTH C R. Analysis of interfacial behavior in NMCs and IMCs by the use of thin-slice push-out tests[J]. Composites Science and Technology,1995,54:87-100. doi: 10.1016/0266-3538(95)00040-2
    [7] CORREA E, MANTIČ V, PARÍS F. A micromechanical view of inter-fibre failure of composite materials under compression transverse to the fibres[J]. Composites Science Technology,2008,68(9):2010-2021. doi: 10.1016/j.compscitech.2008.02.022
    [8] MUELLER W M, MOOSBURGER W J, SAUSE M G R, et al. Microscopic analysis of single-fiber push-out tests on ceramic matrix composites performed with Berkovich and flat-end indenter and evaluation of interfacial fracture toughness[J]. Journal of the European Ceramic Society,2013,33:441-451. doi: 10.1016/j.jeurceramsoc.2012.09.009
    [9] SUN Q, LUO X, YANG Y Q, et al. Micromechanical analysis of fiber and titanium matrix interface by shear lag method[J]. Composites Part B:Engineering,2015,79:466-475. doi: 10.1016/j.compositesb.2015.05.001
    [10] 黄玉东, 朱惠光, 孙文训, 等. 细编穿刺C/C复合材料不同层次界面特性研究[J]. 复合材料学报, 2000, 17(1):56-59. doi: 10.3321/j.issn:1000-3851.2000.01.013

    HUANG Y D, ZHU H G, SUN W X, et al. Investigation of the interfacial characteristics in different gradation for fine weave pierced C/C composites[J]. Acta Materiae Compositae Sinica,2000,17(1):56-59(in Chinese). doi: 10.3321/j.issn:1000-3851.2000.01.013
    [11] BOCCACCINA A R, JANCZAK R J, DLOUHY I. Thermal aging behavior of an SiC-fiber reinforced glass matrix composite in a non-oxidizing atmosphere[J]. Materials Chemistry and Physics,1998,53:155-164. doi: 10.1016/S0254-0584(97)02075-0
    [12] AOKI T, YAMANE Y, OGASAWARA T, et al. Measurements of fiber bundle interfacial properties of three-dimensionally reinforced carbon/carbon composites up to 2273 K[J]. Carbon,2007,45:459-467. doi: 10.1016/j.carbon.2006.07.028
    [13] PEST L B, CAVALLI G, BERTANI P, et al. Adhesive post-endodontic restorations with fiber posts: Push-out tests and SEM observations[J]. Dental Materials,2002,18:596-602. doi: 10.1016/S0109-5641(02)00003-9
    [14] GOUTIANOS S, PEIJS T, GALIOTIS C. Mechanisms of stress transfer and interface integrity in carbon/epoxy compo-sites under compression loading Part I: Experimental investigation[J]. International Journal of Solids and Structures,2002,39:3217-3231. doi: 10.1016/S0020-7683(02)00240-8
    [15] XING Y M, TANAKA Y, KISHIMOTO S, et al. Determining interfacial thermal residual stress in SiC/Ti-15-3 composites[J]. Scripta Materialia,2003,48(6):701-706. doi: 10.1016/S1359-6462(02)00554-7
    [16] 黄建永, 邢永明, 赵春旺. 用显微云纹干涉法研究SiC/Ti-15-3界面热残余应力场[J]. 实验力学, 2006, 21(2):177-182. doi: 10.3969/j.issn.1001-4888.2006.02.010

    HUANG J Y, XING Y M, ZHAO C W. The thermal residual stress field of SiC/Ti-15-3 interface was studied by micro moiré interferometry[J]. Experimental Mechanics,2006,21(2):177-182(in Chinese). doi: 10.3969/j.issn.1001-4888.2006.02.010
    [17] LANG F C, ZHAO Y R, XING Y M, et al. A novel raster-scanning method to fabricate ultra-fine cross-gratings for the generation of electron beam moiré fringe patterns[J]. Optic and Lasers in Engineering,2016,86:281-290. doi: 10.1016/j.optlaseng.2016.06.005
    [18] DALLY J W, READ D T. Electron beam moiré[J]. Experimental Mechanics,1993,32:522-526.
    [19] KISHIMOTO S, XIE H M, SHINYA N. Electron moiré method and its application to micro-deformation measurement[J]. Optics and Lasers in Engineering,2000,34:1-14. doi: 10.1016/S0143-8166(00)00078-6
    [20] WANG Q H, KISHIMOTO S. Simultaneous analysis of residual stress and stress intensity factor in a resist after UV-nanoimprint lithography based on electron moiré fringes[J]. Journal of Micromechanics and Microengineering,2012,22:1-7.
    [21] ZHU R H, XIE H M, ZHU J G. A micro-scale strain rosette for residual stress measurement by SEM moiré method[J]. Science China-Physics, Mechanics & Astronomy,2014,57:716-722.
    [22] WANG Q H, KISHIMOTO S, TSUDA H. Formation of three-way scanning electron microscope moiré on micro/nanostructures[J]. Scientific World Journal,2014,1(1):1-8.
    [23] HŸTCH M J, SNOECK E, KILAAS R. Quantitative measurement of displacement and strain fields from HREM micrographs[J]. Ultramicroscopy,1998,74(3):131-146. doi: 10.1016/S0304-3991(98)00035-7
    [24] RAUSCH G, MEIER B, GRATHWOHL G. A push-out technique for the evaluation of interfacial properties of fiber-reinforced materials[J]. Journal of the European Ceramic Society,1992,10(3):229-235. doi: 10.1016/0955-2219(92)90036-D
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  117
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 录用日期:  2019-07-05
  • 网络出版日期:  2019-07-15
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回