留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

服役温度对铝合金-碳纤维增强树脂复合材料粘接接头准静态失效的影响

栾建泽 宋学伟 那景新 谭伟 慕文龙

栾建泽, 宋学伟, 那景新, 等. 服役温度对铝合金-碳纤维增强树脂复合材料粘接接头准静态失效的影响[J]. 复合材料学报, 2020, 37(5): 1088-1095. doi: 10.13801/j.cnki.fhclxb.20190708.001
引用本文: 栾建泽, 宋学伟, 那景新, 等. 服役温度对铝合金-碳纤维增强树脂复合材料粘接接头准静态失效的影响[J]. 复合材料学报, 2020, 37(5): 1088-1095. doi: 10.13801/j.cnki.fhclxb.20190708.001
LUAN Jianze, SONG Xuewei, NA Jingxin, et al. Effect of service temperature on quasi-static failure of aluminum alloy-carbon fiber reinforced polymer composite bonded joints[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1088-1095. doi: 10.13801/j.cnki.fhclxb.20190708.001
Citation: LUAN Jianze, SONG Xuewei, NA Jingxin, et al. Effect of service temperature on quasi-static failure of aluminum alloy-carbon fiber reinforced polymer composite bonded joints[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1088-1095. doi: 10.13801/j.cnki.fhclxb.20190708.001

服役温度对铝合金-碳纤维增强树脂复合材料粘接接头准静态失效的影响

doi: 10.13801/j.cnki.fhclxb.20190708.001
基金项目: 国家自然科学基金(51775230);吉林大学研究生创新研究计划项目(101832018C198)
详细信息
    通讯作者:

    那景新,教授,博士生导师,研究方向为车身结构设计理论与轻量化技术 Email:najingxin@jlu.edu.cn

  • 中图分类号: TB332

Effect of service temperature on quasi-static failure of aluminum alloy-carbon fiber reinforced polymer composite bonded joints

  • 摘要: 为了研究服役温度对铝合金-碳纤维增强树脂(CFRP)复合材料粘接接头准静态失效的影响,本文加工了铝合金-CFRP复合材料粘接接头。考虑车辆实际运行工况下的服役温度,选取低温(−40℃)、常温(20℃)和高温(80℃)三种环境温度,结合设计的Arcan夹具对铝合金-CFRP复合材料粘接接头分别进行1 mm/min和100 mm/min的准静态试验,得到不同温度下铝合金-CFRP复合材料对接接头(BJs)、45°嵌接接头(45°SJs)和剪切接头(TSJs)的准静态失效强度,并结合失效断面对接头失效形式进行分析,建立了失效准则方程和三维响应曲面。结果表明:不同加载速率下的铝合金-CFRP复合材料粘接接头失效强度在高温环境下均呈明显的下降趋势,在低温环境下均呈一定程度的上升趋势。高温下的失效模式为胶层的内聚失效,低温下的失效模式中纤维撕裂的比例上升。相对于1 mm/min加载速率下的准静态失效强度,各温度和应力状态下的铝合金-CFRP复合材料粘接接头在100 mm/min加载速率下的准静态失效强度明显提高。

     

  • 图  1  铝合金-CFRP复合材料粘接接头几何尺寸

    Figure  1.  Geometry dimensions of aluminum alloy-CFRP composite bonded joints

    图  2  Arcan夹具

    Figure  2.  Arcan fixture

    图  3  粘接夹具

    Figure  3.  Work fixture

    图  4  铝合金-CFRP复合材料粘接接头准静态拉伸测试

    Figure  4.  Quasi-static tensile test of aluminum alloy-CFRP composite bonded joints

    图  5  1 mm/min加载速率时不同温度下铝合金-CFRP复合材料粘接接头的平均失效强度

    Figure  5.  Average failure strength of aluminum alloy-CFRP composite bonded joints under loading rate of 1 mm/min at different temperatures (BJs—Butt joints; 45°SJs—45° scarph joints; TSJs—Shear joints)

    图  6  100 mm/min加载速率时不同温度下铝合金-CFRP复合材料粘接接头的平均失效强度

    Figure  6.  Average failure strength of aluminum alloy-CFRP composite bonded joints under loading rate of 100 mm/min at different temperatures

    图  7  1 mm/min加载速率时不同温度下铝合金-CFRP复合材料粘接接头的失效断面

    Figure  7.  Failure modes of aluminum alloy-CFRP composite bonded joints under loading rate of 1 mm/min at different temperatures

    图  8  100 mm/min加载速率时不同温度下铝合金-CFRP复合材料粘接接头的失效断面

    Figure  8.  Failure modes of aluminum alloy-CFRP composite bonded joints under loading rate of 100 mm/min at different temperatures

    图  9  不同温度下铝合金-CFRP复合材料粘接结构的准静态失效强度预测(加载速率为1 mm/min)

    Figure  9.  Quasi-static failure strength prediction of aluminum alloy-CFRP composite bonded structures at different temperatures (Loading rate of 1 mm/min)

    图  10  不同温度下铝合金-CFRP复合材料粘接结构的动态冲击失效强度预测(加载速率为100 mm/min)

    Figure  10.  Impact failure strength prediction of aluminum alloy-CFRP composite bonded structure at different temperatures (Loading rate of 100 mm/min)

    图  11  不同温度下铝合金-CFRP复合材料粘接结构的失效准则拟合精度

    Figure  11.  Fitting accuracy of failure criteria of aluminum alloy-CFRP composite bonded structure at different temperatures

    图  12  铝合金-CFRP复合材料粘接结构失效准则随温度变化的三维响应曲面

    Figure  12.  Three-dimensional response surface of failure criterion of aluminum alloy-CFRP composite bonded structure varied with temperature

    表  1  碳纤维增强树脂(CFRP)复合材料力学性能

    Table  1.   Mechanical properties of carbon fiber reinforced polymer(CFRP) composites

    Material${E_x}$/GPa${E_y}$/GPa${G_{xy}}$/GPa${\nu _{xy}}$
    Unidirectional-CFRP125±1210±27±0.60.07
    Twill weave-CFRP55±555±54±0.50.14
    Notes: Ex, Ey—Young’s modulus; Gxy—Shear modulus; $\nu $—Poisson’s ratio.
    下载: 导出CSV

    表  2  铝合金材料属性

    Table  2.   Properties of aluminum alloy

    MaterialYoung’s modulus/GPaPoisson’s ratioDensity/
    (kg·m–3)
    Aluminum (6061)710.332 730
    下载: 导出CSV

    表  3  Araldite® 2015材料属性

    Table  3.   Material properties of Araldite® 2015

    Young’s modulus/MPaShear modulus/MPaPoisson’s ratio
    1 8505600.33
    下载: 导出CSV
  • [1] QIN G, NA J, MU W, et al. Failure load prediction of adhesive joints under different stressstates over the service temperature range of automobiles[J]. Journal of Southeast University (English Edition),2018,34(4):509-516.
    [2] ELMARAKBI A. Advanced composite materials for automotive applications: Structural integrity and crashwor thiness[M]. John Wiley & Sons, Ltd., 2014.
    [3] MARQUES E A S, DA SILVA L F M, BANEA M D, et al. Adhesive joints for low- and high-temperature use: An overview[J]. The Journal of Adhesion,2015,91(7):556-585. doi: 10.1080/00218464.2014.943395
    [4] TSVERAVA V G, NEPOVINNYKH V I, RUSIN M Y, et al. Fractography of degradation surfaces of adhesive joints after high-temperature thermal aging[J]. Polymer Science Series D,2009,2(3):174-177. doi: 10.1134/S1995421209030101
    [5] VIANA G, COSTA M, BANEA M D, et al. Moisture and temperature degradation of double cantilever beam adhesive joints[J]. Journal of Adhesion Science and Technology,2017,31(16):1824-1838.
    [6] 秦国锋, 那景新, 慕文龙, 等. 高温老化对CFRP/铝合金粘接接头失效的影响[J]. 吉林大学学报(工学版), 2019, 49(4):1063-1071.

    QIN G F, NA J X, MU W L, et al. Degradation failure of adhesively bonded CFRP/aluminum alloy subjected to high temperature environment[J]. Journal of Jilin University (Engineering and Technology Edition),2019,49(4):1063-1071(in Chinese).
    [7] 刘伟庆, 方海, 方园. 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40(4):1-16.

    LIU W Q, FANG H, FANG Y. Research progress of fiber-reinforced composites and structures[J]. Journal of Building Structures,2019,40(4):1-16(in Chinese).
    [8] BANEA M D, DA SILVA L F M. The effect of temperature on the mechanical properties of adhesives for the automotive industry[J]. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials: Design and Applications,2010,224(2):51-62. doi: 10.1243/14644207JMDA283
    [9] VIANA G, COSTA M, BANEA M, et al. A review on the temperature and moisture degradation of adhesive joints[J]. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials: Design and Applications,2017,231(5):488-501. doi: 10.1177/1464420716671503
    [10] ZHANG J, CHENG X Q, GUO X, et al. Effect of environment conditions on adhesive properties and material selection in composite bonded joints[J]. International Journal of Adhesion and Adhesives,2020,96:102302.
    [11] PLANGGER K, SCHEJA J. Epoxy adhesives under temperature influence[J]. Adhesion Adhesives & Sealants,2015,12(3):28-31.
    [12] ZHANG Y, VASSILOPOULOS A P, KELLER T. Effects of low and high temperatures on tensile behavior of adhesively-bonded GFRP joints[J]. Composite Structures,2010,92(7):1631-1639. doi: 10.1016/j.compstruct.2009.11.028
    [13] 梅春枝. 湿热环境对胶接接头冲击性能的影响[D]. 宜昌: 三峡大学, 2012.

    MEI C Z. Effect of hydrothermal condition on the impact toughness of adhesively bonded joint[D]. Yichang: China Three Gorges University, 2012(in Chinese).
    [14] SAYMAN O, ARIKAN V, DOGAN A, et al. Failure analysis of adhesively bonded composite joints under transverse impact and different temperatures[J]. Composites Part B: Engineering,2013,54:409-414. doi: 10.1016/j.compositesb.2013.06.017
    [15] BANEA M D, DE SOUSA F S M, DA SILVA L F M, et al. Effects of temperature and loading rate on the mechanical properties of a high temperature epoxy adhesive[J]. Journal of Adhesion Science and Technology,2011,25(18):2461-2474. doi: 10.1163/016942411X580144
    [16] ZHAO H, MA X, CAI Z, et al. Effect of low temperature exposure on impact characteristics of epoxy bonded high strength steels[J]. Science and Technology of Welding and Joining,2011,16(5):405-411. doi: 10.1179/1362171810Y.0000000011
    [17] LEE M, YEO E, BLACKLOCK M, et al. Predicting the strength of adhesively bonded joints of variable thickness using a cohesive element approach[J]. International Journal of Adhesion & Adhesives,2015,58:44-52.
    [18] 秦国锋. 温湿老化对车用CFRP/铝合金粘接接头静态失效的影响[D]. 长春: 吉林大学, 2018.

    QIN G F. Effects of temperature and humidity on the static failure of adhesively bonded CFRP/Aluminium alloy joints for automotive applications[D]. Changchun: Jilin University, 2018(in Chinese).
    [19] 那景新, 高原, 慕文龙, 等. 高温老化对玄武岩纤维增强树脂复合材料-铝合金单搭接接头失效的影响[J]. 复合材料学报, 2020, 37(1):140-146.

    NA J X, GAO Y, MU W L, et al. Effect of high temperature exposure on adhesively bonded basalt fiber reinforced polymer composite-aluminum alloy single lap joints[J]. Acta Materiae Compositae Sinica,2020,37(1):140-146(in Chinese).
    [20] QIN G, NA J, TAN W, et al. Failure prediction of adhesively bonded CFRP-aluminum alloy joints using cohesive zone model with consideration of temperature effect[J]. The Journal of Adhesion,2019,95(8):723-746.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  881
  • HTML全文浏览量:  168
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 录用日期:  2019-06-25
  • 网络出版日期:  2019-07-10
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回