留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热轧高含量B4C颗粒增强Al基复合材料的成形性能

杨涛 刘润爱 王文先 连俊杰 郑凡林 陈洪胜

杨涛, 刘润爱, 王文先, 等. 热轧高含量B4C颗粒增强Al基复合材料的成形性能[J]. 复合材料学报, 2021, 38(7): 2234-2243. doi: 10.13801/j.cnki.fhclxb.20200910.001
引用本文: 杨涛, 刘润爱, 王文先, 等. 热轧高含量B4C颗粒增强Al基复合材料的成形性能[J]. 复合材料学报, 2021, 38(7): 2234-2243. doi: 10.13801/j.cnki.fhclxb.20200910.001
YANG Tao, LIU Runai, WANG Wenxian, et al. Formability of high content B4C particle reinforced Al matrix composites by hot rolling[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2234-2243. doi: 10.13801/j.cnki.fhclxb.20200910.001
Citation: YANG Tao, LIU Runai, WANG Wenxian, et al. Formability of high content B4C particle reinforced Al matrix composites by hot rolling[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2234-2243. doi: 10.13801/j.cnki.fhclxb.20200910.001

热轧高含量B4C颗粒增强Al基复合材料的成形性能

doi: 10.13801/j.cnki.fhclxb.20200910.001
基金项目: 国家自然科学基金(51805358;51775366);山西省青年科技研究基金(201801D221122);山西省高校学校科技创新项目(RD1900000633);山西省晋中市重点研发计划(Y201023)
详细信息
    通讯作者:

    陈洪胜,博士,副教授,硕士生导师,研究方向为先进金属基复合材料制备及成形技术 E-mail:chenhongsheng@tyut.edu.cn

  • 中图分类号: TB333

Formability of high content B4C particle reinforced Al matrix composites by hot rolling

  • 摘要: 高含量B4C (B4C≥30wt%)颗粒增强Al基(B4CP/Al)复合材料具有优异的结构和功能特性,尤其是具有优异的中子吸收性能,在核防护领域被用做屏蔽材料使用。但由于高含量B4C颗粒的加入,使B4CP/Al复合材料变形困难。采用ABAQUS数值模拟方法对不同变形量下B4CP/Al复合材料的热轧过程进行数值模拟分析,在480℃温度下对热压烧结的B4CP/Al复合材料坯料进行轧制,并对其微观组织和力学性能进行分析。数值模拟结果表明,热轧变形量达到60%以上时,B4CP/Al复合材料板材表面中间区域应力较小,侧面应力较大,在板材边缘容易产生残余应力。研究结果表明,随轧制下压量的增加,B4CP/Al复合材料中B4C颗粒分布明显均匀,位错密度增加。当轧制变形量达到70%时,B4CP/Al复合材料的屈服强度提高至249.46 MPa,极限抗拉强度提高至299.56 MPa。在拉伸过程中,B4C颗粒优先断裂,但并未与基体界面脱黏,B4C颗粒承受了主要载荷,Al基体发生塑性流动,从而提高了B4CP/Al复合材料的强度。

     

  • 图  1  B4CP/Al复合材料轧制模型

    Figure  1.  Rolling model of B4CP/Al composites

    图  2  B4CP/Al复合材料在不同温度下真实应力-应变曲线[19]

    Figure  2.  True stress-strain curves of B4CP/Al composites at different temperatures[19]

    图  3  B4CP/Al复合材料的微观形貌

    Figure  3.  Microstructure morphology of B4CP/Al composite

    图  4  B4CP/Al复合材料热轧成形过程中最大主应力分布

    Figure  4.  Maximum principal stress distribution in hot rolling process of B4CP/Al composites

    图  5  B4CP/Al复合材料不同变形量下的应力-应变分布图: (a)单道次为10%; (b)单道次为15%; (c)单道次为20%; (d)总变形量为50%;(e)总变形量为60%; (f)总变形量为70%

    Figure  5.  Stress-strain distribution diagrams of B4CP/Al composites under different deformations: (a) Single pass of 10%; (b) Single pass of 15%; (c) Single pass of 20%; (d) Total deformation of 50%; (e) Total deformation of 60%; (f) Total deformation of 70%

    图  6  B4CP/Al复合材料不同变形量下的温度分布云图: (a)单道次为10%; (b)单道次为15%; (c)单道次为20%; (d)总变形量为50%;(e)总变形量为60%; (f)总变形量为70%

    Figure  6.  Temperature distribution diagrams of B4CP/Al composites under different deformations: (a) Single pass of 10%; (b) Single pass of 15%; (c) Single pass of 20%; (d) Total deformation of 50%; (e) Total deformation of 60%;(f) Total deformation of 70%

    图  7  热轧温度场及B4CP/Al复合材料表面与中心温度随时间变化

    Figure  7.  Hot rolling temperature field and surface and center temperature of B4CP/Al composites varying with time

    图  8  单道次不同下压量下B4CP/Al复合板材表面温度随时间的变化曲线

    Figure  8.  Curves of surface temperature of B4CP/Al composite plate with time under different pressures of single pass

    图  9  B4CP/Al复合板材热轧前后的微观组织形貌: (a)坯料板材; (b), (c) 50%变形量; (d) 60%变形量;(e), (f) 70%变形量

    Figure  9.  Microstructures of B4CP/Al composite sheets as hot rolling: (a) Blank sheet; (b), (c) 50% deformation; (d) 60% deformation; (e), (f) 70% deformation

    图  10  B4CP/Al复合材料热轧后的TEM图像

    Figure  10.  TEM image of B4CP/Al composite after hot rolling

    图  11  热轧后B4CP/Al复合材料的力学性能: (a)拉伸应力-应变曲线; (b)屈服强度、极限抗拉强度和延伸率

    Figure  11.  Mechanical properties of hot-rolled B4CP/Al composites: (a) Tensile stress-strain curves; (b) Yield strength (YS), ultimate tensile strength (UTS) and elongation

    图  12  不同变形量热轧后B4CP/Al复合材料拉伸断口的微观形貌: (a)~(c) 50%变形量;(d)~(f) 60%变形量;(g)~(i) 70%变形量

    Figure  12.  Tensile fracture morphologies of B4CP/Al composites after hot rolling with different deformation amounts: (a)–(c) 50% deformation; (d)–(f) 60% deformation; (g)–(i) 70% deformation

    表  1  B4CP/Al复合材料的热物性参数

    Table  1.   Thermal property parameters of B4CP/Al composites

    Temperature/
    Young’s modulus/
    GPa
    Poisson’s
    ratio
    Thermal conductivity/
    (W(m·K)−1)
    Coefficient of thermal
    expansion/10−6−1
    Specific heat/
    (J(kg·K)−1)
    20 98.0 0.35 115 16.5 138
    100 98.8 0.35 110 16.8 138
    300 100.0 0.35 105 16.9 139
    400 101.0 0.35 98 17.2 139
    500 105.0 0.35 97 17.3 140
    下载: 导出CSV
  • [1] 童攀, 林立, 王全兆, 等. 颗粒尺寸对B4C增强铝基中子吸收材料界面反应与力学性能的影响[J]. 复合材料学报, 2019, 36(4):927-937.

    TONG Pan, LIN Li, WANG Quanzhao, et al. Effects of particle size on interfacial reaction and mechanical properties of B4C reinforced aluminum matrix neutron absorber materials[J]. Acta Materiae Compositae Sinica,2019,36(4):927-937(in Chinese).
    [2] ZHANG P, LI J, WANG W X, et al. Design, shielding mechanism and tensile property of a novel (B4CP+6061Al)/Cf/6061Al laminar neutron-shielding composite[J]. Vacuum,2020,177:109383.
    [3] TRUJILLO-VAZQUEZ E, PECH-CANUL M I, GUIA-TELLO J C, et al. Surface chemistry modification for elimination of hydrophilic Al4C3 in B4C/Al composites[J]. Materials & Design,2016,89:94-101.
    [4] XIAN Y, QIU R, WANG X, et al. Interfacial properties and electron structure of Al/B4C interface: A first-principles study[J]. Journal of Nuclear Materials,2016,478:227-235.
    [5] GHASALI E, ALIZADEH M, EBADZADEH T, et al. Mechanical and microstructure comparison between microwave and spark plasma sintering of Al-B4C composite[J]. Journal of Alloys and Compounds,2016,655:93-98.
    [6] CHEN H S WANG W X, NIE H H, etal. Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy[J]. Journal of Alloys and Compounds,2018,730:342-351.
    [7] DWIVEDI S P. Microstructure and mechanical behaviour of Al/B4C metal matrix composite[J]. Materials Today: Proceedings,2020,25(4):751-754.
    [8] AURADI V, RAJESH G L, KORIB S A. Processing of B4C particulate reinforced 6061aluminum matrix composites by melt stirring involving two-step addition[J]. Procedia Materials Sinence,2014,6:1068-1076.
    [9] LEE BS, KANG S. Low-temperature processing of B4C-Al composites via infiltration technique[J]. Materials Chemistry and Physics,2001,67(1-3):249-255.
    [10] CRAMER C L, ELLIOTT A M, KIGGANS J O, et al. Processing of complex-shaped collimators made via binder jet additive manufacturing of B4C and pressureless melt infiltration of Al[J]. Materials and De-sign,2019,180:107956.
    [11] ALIZADEH M. Strengthening mechanisms in particulate Al/B4C composites produced byrepeated roll bonding process[J]. Journal of Alloys and Compounds,2011,509(5):2243-2247.
    [12] FATTAH-ALHOUSSEINIA A, NASERI M, ALEMI M H, et al. Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process[J]. Journal of Manufacturing Processes,2016,22:120-126.
    [13] XU Z G, JIANG L T, ZHANG Q, et al. The formation, evolution and influence of Gd-containing phases in the (Gd+B4C)/6061Al composites during hot rolling[J]. Journal of Alloys and Compounds,2019,775:714-725.
    [14] 靳涛, 王伟, 庞晓轩, 等. 热轧工艺对20%B4C/Al复合材料显微组织及缺陷的影响[J]. 材料导报, 2017, 31(s1):102-104.

    JIN Tao, WANG Wei, PANG Xiaoxuan, et al. Effect of hot rolling process on the microstructures and defects of 20%B4C/Al composites[J]. Materials Review,2017,31(s1):102-104(in Chinese).
    [15] 刘阳阳, 文九巴, 贺俊光. 5052铝合金室温轧制模拟与实验[J]. 塑性工程学报, 2018, 25(5):185-193.

    LIU Yangyang, WEN Jiuba, HE Junguang. Simulation experiment of rolling for aluminum alloy 5052 at room temperature[J]. Journal of Plasticity Engineering,2018,25(5):185-193(in Chinese).
    [16] 刘文拯, 王东亚, 曹晓卿, 等. 镁 /铝爆炸复合板轧制过程的热力耦合数值模拟[J]. 锻压技术, 2016, 41(10): 166-170.

    LIU Wenzheng, WANG Dongya, CAO Xiaoqing, et al. Numerical simulation of the rolling process for Mg/Al explosive welding composite plate with thermo-mechanical coupled model[J]. Forging and Stamping Technology, 2016, 41(10): 166-170(in Chinese).
    [17] 刘生璞. B4CP/6061Al合材料轧制变形行为研究[D]. 北京: 北京有色金属研究总院, 2018.

    LIU Shengpu. Study on rolling deformation behavior of B4CP/6061 Al composite[D]. Beijing: General Research Institute for Nonferrous Metals, 2018(in Chinese).
    [18] 周丽, 王唱舟, 张星星, 等. SiCP/Al复合材料热轧过程的有限元模拟[J]. 金属学报, 2015, 51(7): 889-896.

    ZHOU Li, WANG Changzhou, ZHANG Xingxing, et al. Finite element simulation of hot rolling process for SiCP/Al composites[J]. Acta Metallurgica Sinica, 2015, 51(7): 889-896(in Chinese).
    [19] LI Y L, WANG W X, ZHOU J, et al. Hot deformation behaviors and processing maps of B4C/Al6061 neutron absorber composites[J]. Materials Characterization,2017,124:107-116.
    [20] 崔超. B4C/Al复合材料本构方程及轧制特性研究[D]. 沈阳: 沈阳理工大学, 2017.

    CUI Chao. Research on constitutive equation and rolling properties of B4C/Al composites[D]. Shenyang: Shenyang Ligong University, 2017(in Chinese).
    [21] XUE P, WANG B B, CHEN F F, etal. Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure[J]. Materials Characterization,2016,121:187-194.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  888
  • HTML全文浏览量:  337
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-16
  • 录用日期:  2020-08-30
  • 网络出版日期:  2020-09-11
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回