留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al3Ti/A356铝基复合材料的显微组织及拉伸力学性能

孙建波 曾广凯 邹杰 王雨辰 饶德旺 潘利文 胡治流

孙建波, 曾广凯, 邹杰, 等. Al3Ti/A356铝基复合材料的显微组织及拉伸力学性能[J]. 复合材料学报, 2021, 38(9): 2989-2996. doi: 10.13801/j.cnki.fhclxb.20201126.001
引用本文: 孙建波, 曾广凯, 邹杰, 等. Al3Ti/A356铝基复合材料的显微组织及拉伸力学性能[J]. 复合材料学报, 2021, 38(9): 2989-2996. doi: 10.13801/j.cnki.fhclxb.20201126.001
SUN Jianbo, ZENG Guangkai, ZOU Jie, et al. Microstructure and high temperature mechanical properties of Al3Ti/A356 aluminum matrix composite by in-situ reaction[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2989-2996. doi: 10.13801/j.cnki.fhclxb.20201126.001
Citation: SUN Jianbo, ZENG Guangkai, ZOU Jie, et al. Microstructure and high temperature mechanical properties of Al3Ti/A356 aluminum matrix composite by in-situ reaction[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2989-2996. doi: 10.13801/j.cnki.fhclxb.20201126.001

Al3Ti/A356铝基复合材料的显微组织及拉伸力学性能

doi: 10.13801/j.cnki.fhclxb.20201126.001
基金项目: 广西自然科学基金(2016GXNSFAA380223);广西有色金属及特色材料加工重点实验室青年基金(GXYSYF1806);南宁市科技研究与技术开发计划项目(20171005-1);广西大学“大学生创新创业训练计划”(202010593056)
详细信息
    通讯作者:

    潘利文,博士,副研究员,硕士生导师,研究方向为耐热铝基复合材料  E-mail:plw988@163.com

  • 中图分类号: TB331

Microstructure and high temperature mechanical properties of Al3Ti/A356 aluminum matrix composite by in-situ reaction

  • 摘要: 在A356铝合金熔体中加入K2TiF6盐,通过熔体搅拌原位反应法制备了Al3Ti/A356铝基复合材料,研究了Al3Ti含量对铝基复合材料显微组织及室温和高温拉伸力学性能的影响。结果表明,Al3Ti/A356复合材料的铸态组织由α-Al、共晶Si和(Al, Si)3Ti相组成。随着K2TiF6盐添加量的增加,(Al, Si)3Ti相也逐渐增多,其形状由大块状和棒状转变为小块状,同时,基体中的共晶Si细化效果也越显著。在生成不同Al3Ti含量的复合材料中,2wt%Al3Ti/A356复合材料的常温拉伸抗拉强度和屈服强度均为最高,分别为179.7 MPa和74.1 MPa。350℃高温拉伸时,6wt%Al3Ti/A356复合材料的抗拉强度和屈服强度分别比基体提高22.1%和12.6%,分别达到66.3 MPa和57.9 MPa,最高抗拉强度达到或超过了一些现役汽车活塞用的铝硅合金,表明Al3Ti/A356复合材料具有作为新型耐热铝合金应用于汽车发动机耐热部件的潜力。

     

  • 图  1  拉伸试样示意图

    Figure  1.  Diagram of tensile specimen ((a) Room temperature; (b) High temperature))

    图  2  Al3Ti/A356复合材料的XRD图谱

    Figure  2.  XRD pattern of Al3Ti/A356 composites

    图  3  xAl3Ti/A356复合材料的SEM图像

    Figure  3.  SEM images of xAl3Ti/A356 composites((a) x=0wt%; (b), (e) x=2wt%; (c), (f) x=4wt%; (d), (g) x=6wt%)

    图  4  图3中各点的能谱图

    Figure  4.  EDS analysis of the points in Fig. 3

    图  5  Al3Ti/A356复合材料的工程应力-应变曲线

    Figure  5.  Engineering stress-strain curves of Al3Ti/A356 composite((a) Room temperature; (b) 350℃)

    图  6  xAl3Ti/A356复合材料的拉伸断口微观形貌

    Figure  6.  Micrographs of tensile fracture surface of xAl3Ti/A356 composite ((a) x=0wt%; (b) x=2wt%; (c) x=4wt%; (d) x=6wt%)

    表  1  A356合金化学成分

    Table  1.   Chemical composition of A356 alloy

    ElementSiMgFeTiCuMnZnAl
    Mass fraction/wt% 6.7-7.2 0.3-0.4 ≤0.12 0.1-0.2 ≤0.1 ≤0.05 ≤0.05 Balance
    下载: 导出CSV

    表  2  Al3Ti/A356复合材料金属间化合物含量

    Table  2.   Intermetallic content in Al3Ti/A356 composites

    Sample nameK2TiF6 addition/wt%Al3Ti content/wt%
    A356 0 0
    2wt%Al3Ti/A356 3.7 2
    4wt%Al3Ti/A356 7.4 4
    6wt%Al3Ti/A356 11.2 6
    下载: 导出CSV

    表  3  图3中各相的EDS成分分析

    Table  3.   EDS compositions analysis of each phase shown in Fig. 3 at%

    Spot numberAlSiTiMgFeCuMnPhase types
    1 95.55 3.36 0.09 0.74 0.12 0.00 0.14 α-Al
    2 28.87 70.17 0.00 0.96 0.00 0.00 0.00 Eutectic silicon
    3 66.04 12.71 20.14 1.10 0.00 0.00 0.00 (Al, Si)3Ti
    4 66.55 13.94 18.89 0.49 0.00 0.00 0.13 (Al, Si)3Ti
    5 94.10 4.77 0.00 0.80 0.00 0.17 0.17 α-Al
    6 68.25 12.32 19.06 0.37 0.00 0.00 0.00 (Al, Si)3Ti
    7 45.27 54.11 0.08 0.54 0.00 0.00 0.00 Eutectic silicon
    8 45.90 53.46 0.24 0.40 0.00 0.00 0.00 Eutectic silicon
    9 49.70 49.58 0.19 0.43 0.10 0.00 0.00 Eutectic silicon
    下载: 导出CSV

    表  4  Al3Ti/A356复合材料与其他耐热铝合金在350℃抗拉强度对比

    Table  4.   Comparison of tensile strength of Al3Ti/A356 composite with other heat-resistant aluminum alloys at 350℃

    Materials composition/wt%Temperature/℃Tensile strength/MPaYearRef.
    6%Al3Ti/A356 composite 350 66.3 2020 Present work
    (2%Al3Zr+15.2%Al3Ni)/Al-1Mg-0.8Mn-0.8V 350 82 2020 [27]
    Al-12Si-3Cu-1.5Ni 350 ≈62 2019 [28]
    ZL109Al-(11-13) Si-(0.5-1.5) Cu-(0.8-1.3) Mg-(0.8-1.5) Ni 350 67.4 2018 [29]
    Al-12.01Si-3.53Cu-0.189Fe-2.12Mn 350 83 2018 [29]
    Al-12.75Si-2.63Cu-1.93Ni 350 78.1 2012 [30]
    Al-12.87Si-5.45Cu-1.83Ni 350 93.5 2012 [30]
    Al-13Si-1.08Cu-1.05Mg-1Ni 350 61.63 2010 [31]
    Al-12.8Si-3.23Cu-1.01Mg-1Ni 350 61.71 2010 [31]
    M124Al-12Si-1Cu-1Mg-1Ni 350 35-55 [32]
    M126Al-16Si-1Cu-1Mg-1Ni 350 35-55 [32]
    M138Al-18Si-1Cu-1Mg-1Ni 350 35-55 [32]
    M244Al-25Si-1Cu-Mg-1Ni 350 35-55 [32]
    M142Al-12Si-3Cu-2Ni-1Mg 350 45-65 [32]
    M145Al-15Si-3Cu-2Ni-1Mg 350 45-65 [32]
    下载: 导出CSV
  • [1] 孙德勤, 陈慧君, 文青草, 等. 耐热铝合金的发展与应用[J]. 有色金属科学与工程, 2018, 9(3):65-9.

    SUN Deqin, CHEN Huijun, WEN Qingcao, et al. Development and application of heat resistant aluminum alloy[J]. Nonferrous Metals Science and Engineering,2018,9(3):65-9(in Chinese).
    [2] 隋育栋, 王渠东. 铸造耐热铝合金在发动机上的应用研究与发展[J]. 材料导报, 2015, 29(2):14-19.

    SUI Yudong, WANG Qudong. Application research and development of casting heat-resistant aluminum alloy in engine[J]. Materials Reports,2015,29(2):14-19(in Chinese).
    [3] 贾祥磊, 朱秀荣, 陈大辉, 等. 耐热铝合金研究进展[J]. 兵器材料科学与工程, 2010, 33(2):108-112. doi: 10.3969/j.issn.1004-244X.2010.02.030

    JIA Xianglei, ZHU Xiurong, CHEN Dahui, et al. Research progress of heat resistant aluminum alloy[J]. Ordnance Material Science and Engineering,2010,33(2):108-112(in Chinese). doi: 10.3969/j.issn.1004-244X.2010.02.030
    [4] ZAMANI M, MORINI L, CESCHINI L, et al. The role of transition metal additions on the ambient and elevated temperature properties of Al-Si alloys[J]. Materials Science and Engineering: A,2017,693:42-50. doi: 10.1016/j.msea.2017.03.084
    [5] CHOI S W, CHO H S, KUMAI S. Titanium as an intermetallic phase stabilizer and its effect on the mechanical and thermal properties of Al-Si-Mg-Cu-Ti alloy[J]. Materials Science and Engineering: A,2016,678:267-272. doi: 10.1016/j.msea.2016.09.094
    [6] MANASIJEVIC S, RADISA R, MARKOVIC S, et al. Thermal analysis and microscopic characterization of the piston alloy AlSi13Cu4Ni2Mg[J]. Intermetallics,2011,19(4):486-492. doi: 10.1016/j.intermet.2010.11.011
    [7] 肖于德, 谢允安, 李松瑞. 耐热铝合金及其热稳强化相[J]. 铝加工, 1994, 17(4):24-32.

    XIAO Yude, XIE Yunan, LI Ruisong. Heat-resistant aluminum alloy and its strengthening phase[J]. Aluminium Fabrication,1994,17(4):24-32(in Chinese).
    [8] PARK S I, HAN S Z, SI K C. Phase equilibria of Al3(Ti, V, Zr) intermetallic system[J]. Scripta Materialia,1996,34(11):1697-1704. doi: 10.1016/1359-6462(96)00049-8
    [9] SHAHA S K, CZERWINSKI F, KASPRZAK W, et al. Improving high-temperature tensile and low-cycle fatigue behavior of Al-Si-Cu-Mg Alloys through micro-additions of Ti, V, and Zr[J]. Metallurgical and Materials Transactions A,2015,46(7):3063-3078. doi: 10.1007/s11661-015-2880-x
    [10] SHAHA S K, CZERWINSKI F, KASPRZAK W, et al. Microstructure and mechanical properties of Al–Si cast alloy with additions of Zr-V-Ti[J]. Materials & Design,2015,83:801-812.
    [11] FAN Y, MAKHLOUF M M. The effect of introducing the Al-Ni eutectic composition into Al-Zr-V alloys on microstructure and tensile properties[J]. Materials Science and Engineering: A,2016,654:228-235. doi: 10.1016/j.msea.2015.12.044
    [12] HU H, ZHAO M, WU X, et al. The structural stability, mechanical properties and stacking fault energy of Al3Zr precipitates in Al-Cu-Zr alloys: HRTEM observations and first-principles calculations[J]. Journal of Alloys and Compounds,2016,681:96-108. doi: 10.1016/j.jallcom.2016.04.178
    [13] SHAHA S K, CZERWINSKI F, KASPRZAK W, et al. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy[J]. Metallurgical and Materials Transactions A,2016,47(5):2396-2409. doi: 10.1007/s11661-016-3365-2
    [14] CASSELL A M, ROBSON J D, RACE C P, et al. Dispersoid composition in zirconium containing Al-Zn-Mg-Cu (AA7010) aluminium alloy[J]. Acta Materialia,2019,169:135-146. doi: 10.1016/j.actamat.2019.02.047
    [15] PANDEY P, MAKINENI S K, GAULT B, et al. On the origin of a remarkable increase in the strength and stability of an Al rich Al-Ni eutectic alloy by Zr addition[J]. Acta Materialia,2019,170:205-217. doi: 10.1016/j.actamat.2019.03.025
    [16] SHAHA S K, CZERWINSKI F, KASPRZAK W, et al. Ageing characteristics and high-temperature tensile properties of Al-Si-Cu-Mg alloys with micro-additions of Cr, Ti, V and Zr[J]. Materials Science and Engineering: A,2016,652:353-364. doi: 10.1016/j.msea.2015.11.049
    [17] KNIPLING K E, DUNAND D C, SEIDMAN D N. Criteria for developing castable, creep-resistant aluminum-based alloys-A review[J]. Zeitschrift Für Metallkunde,2006,97(3):246-265. doi: 10.3139/146.101249
    [18] YANG C, LIU Z, ZHENG Q, et al. Ultrasound assisted in-situ casting technique for synthesizing small-sized blocky Al3Ti particles reinforced A356 matrix composites with improved mechanical properties[J]. Journal of Alloys and Compounds,2018,747:580-590. doi: 10.1016/j.jallcom.2018.02.010
    [19] JOHN D, HOGAN L M. Thermal stability in the Al-Al3Ti system[J]. Journal of Materials Science,1980,15:2369-2375. doi: 10.1007/BF00552330
    [20] GUPTA R, CHAUDHARI G P, DANIEL B S S. Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al3Ti by salt addition[J]. Composites Part B: Engineering,2018,140:27-34. doi: 10.1016/j.compositesb.2017.12.005
    [21] TJONG S C, MA Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Materials Science and Engineering: R: Reports,2000,29(3):49-113.
    [22] LIU Z, CHENG N, ZHENG Q, et al. Processing and tensile properties of A356 composites containing in situ small-sized Al3Ti particulates[J]. Materials Science and Engineering: A,2018,710:392-399. doi: 10.1016/j.msea.2017.11.005
    [23] FARAJI M, KATGERMAN L. Distribution of trace elements in a modified and grain refined aluminium-silicon hypoeutectic alloy[J]. Micron,2010,41(6):554-559. doi: 10.1016/j.micron.2010.04.011
    [24] 李豹. AlSi7Mg合金共晶硅变质规律及其微观机制[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    LI Bao. Modification evolution of eutectic silicon in AlSi7Mg alloy and micro-mechanism[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese).
    [25] GAO T, ZHU X, SUN Q, et al. Morphological evolution of ZrAlSi phase and its impact on the elevated-temperature properties of Al-Si piston alloy[J]. Journal of Alloys and Compounds,2013,567:82-88. doi: 10.1016/j.jallcom.2013.03.064
    [26] 王建华, 易丹青. 钛对2618合金组织及性能的影响[J]. 热加工工艺, 2002(6):1-2, 47. doi: 10.3969/j.issn.1001-3814.2002.06.001

    WANG Jianhua, YI Danqing. Effect of titanium on microstructure and properties of 2618 alloy[J]. Hot Working Technology,2002(6):1-2, 47(in Chinese). doi: 10.3969/j.issn.1001-3814.2002.06.001
    [27] PAN L, ZHANG S, YANG Y, et al. High-temperature mechanical properties of aluminum alloy matrix composites reinforced with Zr and Ni trialumnides synthesized by in situ reaction[J]. Metallurgical and Materials Transactions A,2020,51(1):214-225. doi: 10.1007/s11661-019-05511-7
    [28] ZUO L, YE B, FENG J, et al. Effect of δ-Al3CuNi phase and thermal exposure on microstructure and mechanical properties of Al-Si-Cu-Ni alloys[J]. Journal of Alloys and Compounds,2019,791:1015-1024. doi: 10.1016/j.jallcom.2019.03.412
    [29] LI G, LIAO H, SUO X, et al. Cr-induced morphology change of primary Mn-rich phase in Al-Si-Cu-Mn heat resistant aluminum alloys and its contribution to high temperature strength[J]. Materials Science and Engineering: A,2018,709:90-96. doi: 10.1016/j.msea.2017.10.049
    [30] YANG Y, YU K, LI Y, et al. Evolution of nickel-rich phases in Al–Si–Cu–Ni–Mg piston alloys with different Cu additions[J]. Materials & Design,2012,33:220-225.
    [31] LI Y, YANG Y, WU Y, et al. Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al-Si piston alloys[J]. Materials Science and Engineering: A,2010,527(26):7132-7137. doi: 10.1016/j.msea.2010.07.073
    [32] GMBH M. Pistons and engine testing[M]. 2nd edition ed. Stuttgart: Springer Vieweg, 2016.
    [33] 汪光亮. 铸造Al-11.9Si-3.5Cu-1.7Ni-0.8Mg铝合金热处理工艺及力学性能研究[D]. 上海: 上海交通大学, 2015.

    WANG Guangliang. Study on heat treatment and mechanical behavior of cast Al-11.9Si-3.5Cu-1.7Ni-0.8Mg alloy[D]. Shanghai: Shanghai Jiao Tong University, 2015(in Chinese).
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1254
  • HTML全文浏览量:  462
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 录用日期:  2020-11-15
  • 网络出版日期:  2020-11-26
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回