留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2微球在PMMA凝胶聚合物电解质中的尺寸效应及其在全固态电致变色器件中的应用

赵莉 杜蘅 刘虎 龚䶮 李昕 陈彦锟 吴燕

赵莉, 杜蘅, 刘虎, 等. 纳米SiO2微球在PMMA凝胶聚合物电解质中的尺寸效应及其在全固态电致变色器件中的应用[J]. 复合材料学报, 2021, 38(5): 1446-1454. doi: 10.13801/j.cnki.fhclxb.20200914.001
引用本文: 赵莉, 杜蘅, 刘虎, 等. 纳米SiO2微球在PMMA凝胶聚合物电解质中的尺寸效应及其在全固态电致变色器件中的应用[J]. 复合材料学报, 2021, 38(5): 1446-1454. doi: 10.13801/j.cnki.fhclxb.20200914.001
ZHAO Li, DU Heng, LIU Hu, et al. Size effect of nano SiO2 microspheres in PMMA gel polymer electrolyte and its application in all-solid-state electrochromic devices[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1446-1454. doi: 10.13801/j.cnki.fhclxb.20200914.001
Citation: ZHAO Li, DU Heng, LIU Hu, et al. Size effect of nano SiO2 microspheres in PMMA gel polymer electrolyte and its application in all-solid-state electrochromic devices[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1446-1454. doi: 10.13801/j.cnki.fhclxb.20200914.001

纳米SiO2微球在PMMA凝胶聚合物电解质中的尺寸效应及其在全固态电致变色器件中的应用

doi: 10.13801/j.cnki.fhclxb.20200914.001
基金项目: 国家自然科学基金(51873003);北京市教委科技重点项目(KZ201910012015);北京服装学院高水平教师队伍建设专项资金(BIFTXZ201802);北京市长城学者培育计划(CTT&TCD20180321);北京学者计划(RCQJ20303)
详细信息
    通讯作者:

    李昕,博士,教授,研究方向为复合导电纤维、电致变色材料及器件、光子晶体材料及纤维 E-mail:clylx@bift.edu.cn

  • 中图分类号: TB332

Size effect of nano SiO2 microspheres in PMMA gel polymer electrolyte and its application in all-solid-state electrochromic devices

  • 摘要: 本文采用Stöber法制备了不同粒径纳米SiO2微球,将其加入到聚甲基丙烯酸甲酯(PMMA)基凝胶聚合物电解质中,研究了纳米SiO2的尺寸效应及其对全固态电致变色器件性能的影响。研究发现,正硅酸乙酯和乙醇的体积比影响所得纳米SiO2微球粒径大小,乙醇所占体积比例越大,制备的纳米SiO2微球粒径越小。在PMMA基凝胶聚合物电解质中,当纳米SiO2微球用量相同时,电解质的电化学窗口随着纳米SiO2微球粒径的减小先增大后减小,离子电导率随纳米SiO2微球粒径的增大而增大,在纳米SiO2微球粒径为150 nm时电化学窗口达到最大,离子电导率的增速也变得不明显。当粒径为150 nm的纳米SiO2微球含量为7wt%时,PMMA凝胶电解质的电化学窗口为4.8 V,电导率为1.13 mS/cm。以该电解质组装结构为:导电玻璃(ITO)‖SiO2/碳酸丙烯脂(PC)-LiClO4​​​​​​​​​​​​​​/PMMA‖金属-超分子聚合物‖ITO的透射式全固态电致变色器件,所得器件可在淡绿色和深蓝色之间变色,对比度高达60.1%,且器件的稳定性得以明显提高。

     

  • 图  1  不同粒径SiO2的SEM图像: (a)正硅酸乙酯∶乙醇=3∶10; (b) 正硅酸乙酯∶乙醇=3∶30; (c) 正硅酸乙酯∶乙醇=3∶50;(d) 正硅酸乙酯∶乙醇=3∶60; (e) 正硅酸乙酯∶乙醇=3∶70 (体积比)

    Figure  1.  SEM images of SiO2 with different diameters: (a) Ethyl orthosilicate∶ ethanol=3∶10; (b) Ethyl orthosilicate∶ ethanol=3∶30; (c) Ethyl orthosilicate∶ ethanol=3∶50; (d) Ethyl orthosilicate∶ ethanol=3∶60; (e) Ethyl orthosilicate∶ ethanol=3∶70 (Volume ratio)

    图  2  不同粒径纳米SiO2的SiO2/PMMA凝胶聚合物电解质的外观

    Figure  2.  Appearance of SiO2/PMMA composite gel polymer electrolyte with different diameters of nano SiO2

    图  3  250 nm SiO2的SiO2/PMMA复合凝胶聚合物电解质截面的SEM图像

    Figure  3.  SEM image of SiO2/PMMA composite gel polymer electrolyte with 250 nm SiO2

    图  4  不同粒径纳米SiO2对SiO2/PMMA复合凝胶聚合物电解质电化学窗口(a)及电导率(b)的影响

    Figure  4.  Effect of nano SiO2 with different diameters on electrochemical window (a) and conductivity (b) of SiO2/PMMA composite gel polymer electrolyte

    图  5  不同150 nm SiO2含量对SiO2/PMMA复合凝胶聚合物电解质可见光透过率的影响: (a)不同SiO2含量的复合凝胶聚合物电解质的透过率曲线; (b) SiO2含量与最大透过率关系

    Figure  5.  Effect of 150 nm SiO2 with different contents on visible light transmittance of SiO2/PMMA composite gel polymer electrolytes: (a) Transmittance curves of composite gel polymer electrolyte with different SiO2 contents; (b) Relationship between SiO2 content and maximum transmittance

    图  6  不同150 nm SiO2含量的SiO2/PMMA复合凝胶聚合物电解质的电化学窗口(a)和电导率(b)

    Figure  6.  Electrochemical window (a) and conductivity (b) of SiO2/PMMA composite gel polymer electrolytes with different contents of 150 nm SiO2

    图  7  SiO2/PMMA复合凝胶聚合物电解质的TG曲线

    Figure  7.  TG curves of SiO2/PMMA composite gel polymer electrolytes

    图  8  基于SiO2/PMMA复合凝胶聚合物电解质的全固态电致变色器件

    Figure  8.  All-solid-state electrochromic device based on SiO2/PMMA composite gel polymer electrolyte

    图  9  全固态电致变色器件的循环伏安(CV)曲线

    Figure  9.  Cyclic voltammetry (CV) curves of all solid-state electrochromic device

    图  10  SiO2/PMMA复合凝胶聚合物电解质电致变色器件透过率与时间的关系(a)及循环稳定性(b)

    Figure  10.  Relationship between transmittance and time (a) and cyclic stability (b) of electrochromic devices based on SiO2/PMMA composite gel polymer electrolyte

    表  1  乙醇浓度变化与SiO2粒径大小的关系

    Table  1.   Relationship between variation of reaction conditions and diameter of SiO2

    TEOS/mLC2H5OH/mLNH3•H2O/mLH2O/mLDiameter of SiO2/nm
    30 100 15 50 400
    30 300 15 50 300
    30 500 15 50 250
    30 600 15 50 150
    30 700 15 50 90
    Note: TEOS—Ethyl orthosilicate.
    下载: 导出CSV
  • [1] HUANG Q Q, SONG J X, GAO Y, et al. Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes[J]. Nature Communications,2019,10:1-7.
    [2] 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 2(4):331-341. doi: 10.3969/j.issn.2095-4239.2013.04.001

    XU Xiaoxiong, QIU Zhijun, GUAN Yibiao,et al. Research status and prospects of all solid-state lithium battery technology[J]. Energy Storage Science and Technology,2013,2(4):331-341(in Chinese). doi: 10.3969/j.issn.2095-4239.2013.04.001
    [3] CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature,1998,394:456-458.
    [4] DRIS N H, RAHMAN M M, WANG J Z, et al. Microporous gel polymer electrolytes for lithiumrechargeable batteryappliction[J]. Journal of Power Sources,2012,201:294-300.
    [5] 赵世勇. 锂离子电池用聚合物凝胶电解质研究进展[J]. 电池工业, 2014, 19(1):35-40. doi: 10.3969/j.issn.1008-7923.2014.01.008

    ZHAO Shiyong. Research progress of polymer gel electrolytes for lithium ionbatteries[J]. Battery Industry,2014,19(1):35-40(in Chinese). doi: 10.3969/j.issn.1008-7923.2014.01.008
    [6] WANG W, ALEXANDRIDIS P. Composite polymer electrolytes: Nanoparticles affect structure and properties[J]. Polymers,2016,8(11):387.
    [7] NGAI K S, RAMESH S, RAMESH K, et al. A review of polymer electrolytes: Fundamental, approaches and applications[J]. Ionics,2016,22(8):1259-1279.
    [8] ZHUZ Q, HONG M L, GUO D S, et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar quinone cathode[J]. Journal of the American Chemical Society,2014,136(47):16461-16464.
    [9] 樊小伟, 梁小平. 电致变色玻璃用聚合物凝胶电解质改性研究进展[J]. 建材世界, 2017, 38(2):7-9.

    FAN Xiaowei, LIANG Xiaoping. Research progress of polymer gel electrolyte modification for electrochromic glass[J]. Building Materials World,2017,38(2):7-9(in Chinese).
    [10] RIBERIRO R, SILVA G G, MOHALLEM N D S. A comparison of ionic conductivity, thermal behavior and morphology in two polymer-LiI-LiAl5O8 composite polymerelectrolytes[J]. Electrochim Acta,2001,46(10-11):1679-1686.
    [11] PASQUIER A D, WARREN P C, CULVER D, et al. Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process[J]. Solid State Ionics,2000,135(1-4):249-257.
    [12] KIL E H, CHOI K H, HA H J, et al. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries[J]. Advanced Materials,2013,25(10):1395-1400.
    [13] 张榜, 李昕, 龚䶮, 等. 金属超分子聚合物基柔性电致变色器件的制备及稳定性探索[J]. 北京服装学院学报, 2018, 38(4):1-8.

    ZHANG Bang, LI Xin, GONG Yan, LIU Jiguang, PANG Yali, ZHANG Yuqing, LUO Shengli, ZHANG Yuqun. Preparation and stability exploration of metal supramolecular polymer-based flexible electrochromic devices[J]. Journal of Beijing Institute of Fashion Technology,2018,38(4):1-8(in Chinese).
    [14] STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid & Interface Science,1968,26(1):62-69.
    [15] WU S L, MENG J Y, LI X, et al. Metallo-supramolecular polymer based on bis-2, 2': 6, 2"-terpyridine with high electrochromic performances[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018.
    [16] 赵丽, 余家国, 程蓓, 等. 单分散SiO2球形颗粒的制备与形成机制[J]. 化学学报, 2003, 61(4):562-566. doi: 10.3321/j.issn:0567-7351.2003.04.020

    ZHAO Li, YU Jiaguo, CHENG Bei, et al. Preparation and formation mechanism of monodispersed spherical silica particles[J]. Acta Chimica Sinica,2003,61(4):562-566(in Chinese). doi: 10.3321/j.issn:0567-7351.2003.04.020
    [17] 符远翔, 孙艳辉, 葛杏心. 单分散纳米SiO2的制备与表征[J]. 硅酸盐通报, 2008, 27(1):154-159.

    FU Yuanxiang, SUN Yanhui, GE Xingxin. Preparation and characterization of monodispersed nano-silica[J]. Bulletin of the Chinese Ceramic Society,2008,27(1):154-159(in Chinese).
    [18] 颜建民, 张裕卿. 氨基化修饰介孔SiO2用于疏水性药物的负载和释放[J]. 化学工业与工程, 2017, 34(3):43-49.

    YAN Jianmin, ZHANG Yuqing. Amino-modified mesoporous silica for loading and release of hydrophobic drugs[J]. Chemical Industry and Engineering,2017,34(3):43-49(in Chinese).
    [19] SOLARAJAN A K, MURUGADOSS V, ANGAIAH S. High performance electrospun PVDF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors[J]. Journal of Applied Polymer Science,2017,134(32):45177.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1459
  • HTML全文浏览量:  706
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 录用日期:  2020-08-10
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回