留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯桥联的ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能

杜春艳 宋佳豪 谭诗杨 阳露 张卓 余关龙

杜春艳, 宋佳豪, 谭诗杨, 等. 石墨烯桥联的ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能[J]. 复合材料学报, 2021, 38(7): 2254-2264. doi: 10.13801/j.cnki.fhclxb.20200909.001
引用本文: 杜春艳, 宋佳豪, 谭诗杨, 等. 石墨烯桥联的ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能[J]. 复合材料学报, 2021, 38(7): 2254-2264. doi: 10.13801/j.cnki.fhclxb.20200909.001
DU Chunyan, SONG Jiahao, TAN Shiyang, et al. Preparation of graphene bridged ZnO/Ag3PO4 composite and its degradation performance for ciprofloxacin[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2254-2264. doi: 10.13801/j.cnki.fhclxb.20200909.001
Citation: DU Chunyan, SONG Jiahao, TAN Shiyang, et al. Preparation of graphene bridged ZnO/Ag3PO4 composite and its degradation performance for ciprofloxacin[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2254-2264. doi: 10.13801/j.cnki.fhclxb.20200909.001

石墨烯桥联的ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能

doi: 10.13801/j.cnki.fhclxb.20200909.001
基金项目: 湖南省教育厅科学研究项目(18B127;19A032;16C0060);国家自然科学基金(51109016)
详细信息
    通讯作者:

    杜春艳,博士,讲师,硕士生导师,研究方向为水处理新材料 E-mail:cydu@csust.edu.cn

  • 中图分类号: TB333

Preparation of graphene bridged ZnO/Ag3PO4 composite and its degradation performance for ciprofloxacin

  • 摘要: 采用沉淀沉积法制备了石墨烯桥联的ZnO/Ag3PO4复合光催化材料,具有优异的可见光催化性能,通过XRD、XPS、SEM、EDS、BET、FTIR、UV-Vis DRS、PL及ESR等表征手段对其晶体结构、形貌、光学性质等进行了表征及分析,并研究了不同氧化石墨烯比例的GO-ZnO/Ag3PO4复合材料对模拟抗生素废水环丙沙星(CIP)的光催化降解性能。由于GO及ZnO的引入,不仅增强了GO-ZnO/Ag3PO4对可见光吸收,且拥有了更高的电子-空穴对的分离效率。当GO与Ag3PO4的质量比为1%时,GO-ZnO/Ag3PO4显示出最佳的光催化活性,60 min可见光照后对CIP降解率可达85.3%。捕获实验表明,超氧自由基(·O2)是反应过程中的主要活性物质,ZnO与Ag3PO4之间形成了异质结,符合Z型电子转移机制,GO的引入进一步提高了电子的快速转移,并使Z型体系更加稳定。经过6次光催化循环,降解率依然保持在70%以上,表明GO-ZnO/Ag3PO4复合材料具有优异的稳定性。

     

  • 图  1  纯ZnO、Ag3PO4、ZAP和GZAP-4的XRD图谱

    Figure  1.  XRD patterns of pure ZnO, Ag3PO4, ZAP and GZAP-4

    图  2  GZAP-4的XPS图谱:(a)全谱;(b) C 1s;(c) Ag 3d;(d) Zn 2p

    Figure  2.  XPS diagram of GZAP-4:(a) Full spectrum; (b) C 1s; (c) Ag 3d; (d) Zn 2p

    图  3  纯ZnO、Ag3PO4、ZAP和GZAP-4的FTIR图谱

    Figure  3.  FTIR images of pure ZnO, Ag3PO4, ZAP and GZAP-4

    图  4  样品的SEM图像

    Figure  4.  SEM image of the samples ((a) Pure ZnO; (b) Pure Ag3PO4; (c) ZAP; (d) GZAP-4)

    图  5  GZAP-4的EDS图谱

    Figure  5.  EDS diagram of GZAP-4

    图  6  Ag3PO4和GZAP-4的N2吸附-解吸等温线

    Figure  6.  N2 adsorption-desorption isotherm of Ag3PO4 and GZAP-4

    图  7  ZnO、Ag3PO4、ZAP和GZAP-4的UV-Vis DRS图(a)和Ag3PO4、ZAP和GZAP-4的PL光谱(b)

    Figure  7.  UV-Vis DRS diagram of ZnO, Ag3PO4, ZAP and GZAP-4 (a) as well as PL spectrum of Ag3PO4, ZAP and GZAP-4 (b)

    图  8  不同样品可见光降解CIP曲线(a)和对应样品准一级动力学拟合(b)

    Figure  8.  Visible light degradation curves of CIP by different samples (a) and quasi-first-order kinetic fitting of corresponding samples (b)

    图  9  GZAP-4循环6次光催化降解图

    Figure  9.  Photocatalytic degradation after 6 cycles of GZAP-4

    图  10  GZAP-4添加不同捕获剂对光催化的影响

    Figure  10.  The effect of adding different capture agents to GZAP-4 on photocatalysis

    图  11  可见光下Ag3PO4和GZAP-4的ESR DMPO-·O2光谱

    Figure  11.  ESR DMPO-·O2spectrum of Ag3PO4 and GZAP-4 under visible light

    图  12  ZnO和Ag3PO4的禁带宽度计算

    Figure  12.  Calculation of the band gap of ZnO and Ag3PO4

    图  13  GO-ZnO/Ag3PO4的光催化机制示意图

    Figure  13.  Schematic diagram of the photocatalytic mechanism of GO-ZnO/Ag3PO4

    表  1  复合材料命名

    Table  1.   Composite name

    Composite nameMass ratio of GO to Ag3PO4/%Lable
    ZnO/Ag3PO4 0 ZAP
    1GO-Ag3PO4 1 GAP
    0.1GO-ZnO/Ag3PO4 0.1 GZAP-1
    0.2GO-ZnO/Ag3PO4 0.2 GZAP-2
    0.5GO-ZnO/Ag3PO4 0.5 GZAP-3
    1GO-ZnO/Ag3PO4 1 GZAP-4
    2GO-ZnO/Ag3PO4 2 GZAP-5
    下载: 导出CSV

    表  2  Ag3PO4和GZAP-4的比表面积、孔径及孔体积数据

    Table  2.   Specific surface area, pore size and pore volume data of Ag3PO4 and GZAP-4

    SampleSurface area/
    (m2·g−1)
    Average pore sizes/nmPore volume/(cm3·g−1)
    Ag3PO4 9.59 8.51 0.0077
    GZAP-4 16.47 6.23 0.0751
    下载: 导出CSV
  • [1] SHI H, YANG S, HAN C, et al. Fabrication of Ag/Ag3PO4/WO3 ternary nanoparticles as superior photocatalyst for phenol degradation under visible light irradiation[J]. Solid State Sciences,2019,96:105967.
    [2] LIANG C, FENG H, NIU H, et al. A dual transfer strategy for boosting reactive oxygen species generation in ultrathin Z-scheme heterojunction driven by electronic field[J]. Chemical Engineering Journal,2020,384:123236.
    [3] GANGULY P, BYRNE C, BREEN A, et al. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances[J]. Applied Catalysis B: Environmental,2018,225:51-75.
    [4] MU C, ZHANG Y, CUI W, et al. Removal of bisphenol A over a separation free 3D Ag3PO4 -graphene hydrogel via an adsorption-photocatalysis synergy[J]. Applied Catalysis B: Environmental,2017,212:41-49.
    [5] 宋萃, 戚明颖, 刘金芳, 等. Ag3PO4/羟基磷灰石复合光催化剂的制备及对亚甲基蓝的高效降解[J]. 复合材料学报, 2020, 37(6):1418-1425.

    SONG Cui, QI Mingying, LIU Jinfang, et al. Preparation of Ag3PO4/HAP composite photocatalyst and its efficient degradation of methylene blue[J]. Acta Materiae Compositae Sinica,2020,37(6):1418-1425(in Chinese).
    [6] Al K M, GUPTA S S, CHAKRABORTTY D. Ag3PO4-based nanocomposites and their applications in photodegradation of toxic organic dye contaminated wastewater: Review on material design to performance enhancement[J]. Journal of Saudi Chemical Society,2020,24(1):20-41.
    [7] MU Z, HUA J, KUMAR T S, et al. Visible light photocatalytic activity of Cu, N co-doped carbon dots/Ag3PO4 nanocomposites for neutral red under green LED radiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,578:123643.
    [8] LI Q, WANG F, HUA Y, et al. Deposition-precipitation preparation of Ag/Ag3PO4/WO3 nanocomposites for efficient Visible-light degradation of rhodamine B under strongly acidic/alkaline conditions[J]. Journal of Colloid and Interface Science,2017,506:207-216.
    [9] AMORNPITOKSUK P, SUWANBOON S. Photocatalytic decolorization of methylene blue dye by Ag3PO4–AgX (X=Cl, Br and I) under visible light[J]. Advanced Powder Technology,2014,25(3):1026-1030.
    [10] YI Z, LI X, WU H, et al. Fabrication of ZnO@Ag3PO4 core-shell nanocomposite arrays as photoanodes and their photoelectric properties[J]. Nanomaterials (Basel),2019,9(9):1254-1265.
    [11] LIU J, XIE F, LI R, et al. TiO2-x/Ag3PO4 photocatalyst: Oxygen vacancy dependent visible light photocatalytic performance and BPA degradative pathway[J]. Materials Science in Semiconductor Processing,2019,97:1-10.
    [12] RAO X, DOU H, LONG D, et al. Ag3PO4/g-C3N4 nanocomposites for photocatalytic degradating gas phase formaldehyde at continuous flow under 420 nm LED irradiation[J]. Chemosphere,2020,244:125462.
    [13] YOU L, GAO M, LI T, et al. Investigation of the kinetics and mechanism of Z-scheme Ag3PO4/WO3 p-n junction photocatalysts with enhanced removal efficiency for RhB[J]. New Journal of Chemistry,2019,43(43):17104-17115.
    [14] SHAO B, LIU X, LIU Z, et al. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation[J]. Chemical Engineering Journal,2019,368:730-745.
    [15] LI Z, DAI K, ZHANG J, et al. Facile synthesis of novel octahedral Cu2O/Ag3PO4 composite with enhanced visible light photocatalysis[J]. Materials Letters,2017,206:48-51.
    [16] LV J, ZHU Q, ZENG Z, et al. Enhanced photocurrent and photocatalytic properties of porous ZnO thin film by Ag nanoparticles[J]. Journal of Physics and Chemistry of Solids,2017,111:104-109.
    [17] VAIANO V, MATARANGOLO M, MURCIA J J, et al. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J]. Applied Catalysis B: Environmental,2018,225:197-206.
    [18] JIN C, LIU G, ZU L, et al. Preparation of Ag@Ag3PO4@ZnO ternary heterostructures for photocatalytic studies[J]. Journal of Colloid and Interface Science,2015,453:36-41.
    [19] ZHONG J, LI J, WANG T, et al. Improved solar-driven photocatalytic performance of Ag3PO4/ZnO composites benefiting from enhanced charge separation with a typical Z-scheme mechanism[J]. Applied Physics A,2016,122:4.
    [20] MARTÍN-GÓMEZ A N, NAVÍO J A, JARAMILLO-PÁEZ C, et al. Hybrid ZnO/Ag3PO4 photocatalysts, with low and high phosphate molar percentages[J]. Journal of Photochemistry and Photobiology A: Chemistry,2020,388:112196.
    [21] DONG C, WU K, LI M, et al. Synthesis of Ag3PO4-ZnO nanorod composites with high visible-light photocatalytic activity[J]. Catalysis Communications,2014,46:32-35.
    [22] LI Y, CUI W, LIU L, et al. Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction[J]. Applied Catalysis B: Environmental,2016,199:412-423.
    [23] 张转芳, 唐林, 孙立, 等. CuS/GO纳米复合材料的制备及光催化降解性能[J]. 精细化工, 2019, 36(02):237-242.

    ZHANG ZhuanFang, TANG Lin, SUN Li, et al. Preparation of CuS/GO Nanocomposite and Its Photocatalytic Degradation Activity[J]. Fine Chemicals,2019,36(02):237-242(in Chinese).
    [24] 杨程, 时双强, 郝思嘉, 等. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020(7):1-13.

    YANG Cheng, SHI Shuangqiang, HAO Sijia, et al. Research progress in graphene based photocatalytic materials and applications in environmental purification[J]. Journal of Materials Engineering,2020(7):1-13(in Chinese).
    [25] CHEN F, YANG Q, LI X, et al. Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (40) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation[J]. Applied Catalysis B: Environmental,2017,200:330-342.
    [26] YAN J, WANG C, XU H, et al. AgI/Ag3PO4 heterojunction composites with enhanced photocatalytic activity under visible light irradiation[J]. Applied Surface Science,2013,287:178-186.
    [27] THI V H, LEE B. Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation[J]. Materials Research Bulletin,2017,96:171-182.
    [28] LI Y, XIAO X, YE Z. Fabrication of BiVO4/RGO/Ag3PO4 ternary composite photocatalysts with enhanced photocatalytic performance[J]. Applied Surface Science,2019,467-468:902-911.
    [29] LIANG C, ZHANG L, GUO H, et al. Photo-removal of 2, 2′4, 4′-tetrabromodiphenyl ether in liquid medium by reduced graphene oxide bridged artificial Z-scheme system of Ag@Ag3PO4/g-C3N4[J]. Chemical Engineering Journal,2019,361:373-386.
    [30] 张志伟, 徐斌, 张毅敏, 等. GO/(CeO2-TiO2)改性复合膜紫外光催化去除氨氮、DOC[J]. 中国环境科学, 2020, 40(3):1116-1122. doi: 10.3969/j.issn.1000-6923.2020.03.022

    ZHANG Zhiwei, XU Bin, ZHANG Yimin, et al. Ultraviolet photocatalytic removal of ammonia nitrogen and DOC by GO/(CeO2-TiO2) modified composite membrane[J]. Chinese Environmental Science,2020,40(3):1116-1122(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.03.022
    [31] WANG H, ZOU L, SHAN Y, et al. Ternary GO/Ag3PO4/AgBr composite as an efficient visible-light-driven photocatalyst[J]. Materials Research Bulletin,2018,97:189-194.
    [32] CHEN X, DAI Y, WANG X, et al. Synthesis and characterization of Ag3PO4 immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2, 4-dichlorophenol under visible light irradiation[J]. Journal of Hazardous Materials,2015,292:9-18.
    [33] 常亮亮, 于艳, 曹宝月, 等. 可循环利用BiOBr/石墨烯水凝胶复合材料的制备及其对丁基钠黄药的降解性能[J]. 复合材料学报, 2020, 36(1):1-10.

    CHANG Liangliang, YU Yan, CAO Baoyue, et al. Preparation of Recyclable BiOBr/Graphene Hydrogel Composite and Its Photodegradation of Sodium Butyl Xanthate[J]. Acta Materiae Compositae Sinica,2020,36(1):1-10(in Chinese).
    [34] 胡金娟, 马春雨, 王佳琳, 等. Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J]. 复合材料学报, 2020, 37(6):1401-1410.

    HU Jinjuan, MA Chunyu, WANG Jialin, et al. Preparation and photocatalytic properties of Ag-Ag2O/TiO2-g-C3N4 nanocomposites[J]. Acta Materiae Compositae Sinica,2020,37(6):1401-1410(in Chinese).
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1454
  • HTML全文浏览量:  370
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-16
  • 录用日期:  2020-08-27
  • 网络出版日期:  2020-09-10
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回