留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg对原位自生TiB2/Al-4.5Cu复合材料微观组织及力学性能的影响

薛彦庆 郝启堂 李新雷 魏典 李博 余量量

薛彦庆, 郝启堂, 李新雷, 等. Mg对原位自生TiB2/Al-4.5Cu复合材料微观组织及力学性能的影响[J]. 复合材料学报, 2021, 38(5): 1507-1516. doi: 10.13801/j.cnki.fhclxb.20200814.003
引用本文: 薛彦庆, 郝启堂, 李新雷, 等. Mg对原位自生TiB2/Al-4.5Cu复合材料微观组织及力学性能的影响[J]. 复合材料学报, 2021, 38(5): 1507-1516. doi: 10.13801/j.cnki.fhclxb.20200814.003
XUE Yanqing, HAO Qitang, LI Xinlei, et al. Effect of Mg on microstructure and mechanical properties of in-situ TiB2/Al-4.5Cu composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1507-1516. doi: 10.13801/j.cnki.fhclxb.20200814.003
Citation: XUE Yanqing, HAO Qitang, LI Xinlei, et al. Effect of Mg on microstructure and mechanical properties of in-situ TiB2/Al-4.5Cu composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1507-1516. doi: 10.13801/j.cnki.fhclxb.20200814.003

Mg对原位自生TiB2/Al-4.5Cu复合材料微观组织及力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20200814.003
基金项目: 国家自然科学基金(51375391);陕西省重点研发计划(2020GY-117);西北工业大学凝固技术国家重点实验室自主研究课题资助项目(2019-TZ-03)
详细信息
    通讯作者:

    郝启堂,博士,教授,研究方向为金属基复合材料  E-mail:haoqitang@nwpu.edu.cn

  • 中图分类号: TB333;TG290.2

Effect of Mg on microstructure and mechanical properties of in-situ TiB2/Al-4.5Cu composites

  • 摘要: 采用Al-K2TiF6-KBF4混合盐原位自生反应法,制备了不同Mg质量分数的3wt% TiB2/Al-4.5Cu复合材料。采用SEM、TEM、HM硬度测试和室温拉伸等方法研究了Mg含量和多级热处理对3wt% TiB2/Al-4.5Cu复合材料微观组织和力学性能的影响。微观组织观察发现:Mg质量分数为3wt%时,经过多级热处理后,TiB2颗粒的团聚现象明显改善,反应生成的TiB2颗粒平均尺寸约为130 nm,基体内伴随有大量弥散分布的纳米级颗粒,且α-Al的晶粒尺寸也明显减小。力学测试结果表明:多级热处理后,3wt% TiB2/Al-4.5Cu复合材料的硬度和抗拉强度随Mg含量的增加而提高,但过量的Mg (≥4wt%)会造成TiB2颗粒细化效果下降。分析表明:Mg的加入能够降低TiB2/α-Al界面能,减少脆性相Al3Ti、Al2B的生成,并通过反应生成的MgAl2O4使界面结构变成TiB2/MgAl2O4/α-Al,从而有效抑制了TiB2的团聚,改善了TiB2颗粒与Al液界面的润湿性,提高了形核率,进一步细化了α-Al晶粒尺寸。

     

  • 图  1  3wt% TiB2/Al-4.5Cu复合材料多级热处理前后的微观形貌: (a)不含Mg; (b)选区放大; (c) 3wt% Mg; (d)选区放大

    Figure  1.  Morphologies of 3 wt% TiB2/Al-4.5Cu composites before and after multistage-heat treated: (a) Without Mg; (b) Amplification of selected area; (c) 3wt% Mg; (d) Amplification of selected area

    图  2  3wt% TiB2/Al-4.5Cu复合材料多级热处理后TiB2颗粒的微观形貌: (a)不含Mg; (b) 1wt% Mg; (c) 2wt% Mg; (d) 3wt% Mg; (e) 4wt% Mg; (f) 4.5wt% Mg

    Figure  2.  Morphologies of TiB2 particles in multistage-heat treated 3wt% TiB2/Al-4.5Cu composites: (a) Without Mg; (b) 1wt% Mg; (c) 2wt% Mg; (d) 3wt% Mg; (e) 4wt% Mg; (f) 4.5wt% Mg

    图  3  Mg含量为3wt%的3wt% TiB2/Al-4.5Cu复合材料中TiB2颗粒的微观形貌: (a) α-Al晶界处和晶体内部的TiB2颗粒; (b) TiB2 诱导产生的刃位错

    Figure  3.  Morphologies of TiB2 particles in 3wt% TiB2/Al-4.5Cu composites with content of 3wt% Mg: (a) Interfacial and interior TiB2 particles; (b) Edge dislocation induced by TiB2 particles

    图  4  多级热处理前后3wt% TiB2/Al-4.5Cu复合材料力学性能随Mg质量分数的变化: (a)室温拉伸强度; (b)延伸率; (c)微观硬度(HB)

    Figure  4.  Mechanical properties of 3wt% TiB2/Al-4.5Cu composites varying with Mg mass fraction before and after multistage heat treatment: (a) Tensile strength; (b) Elongation; (c) Micro hardness (HB)

    Rm—Tensile strength; Rp0.2—Proof strength

    图  5  3wt% TiB2/Al-4.5Cu复合材料多级热处理后断口的微观形貌: (a)不含Mg; (b) 1wt% Mg; (c) 2wt% Mg; (d) 3wt% Mg; (e) 4wt% Mg; (f) 4.5wt% Mg

    Figure  5.  Fracture morphologies of multistage-heat treated 3wt% TiB2/Al-4.5Cu composites: (a) Without Mg; (b) 1wt% Mg; (c) 2wt% Mg; (d) 3wt% Mg; (e) 4wt% Mg; (f) 4.5wt% Mg;

    表  1  实验所用原料

    Table  1.   Raw materials of experiment

    Raw materialAlMgAl-50CuKBF4K2TiF6Na3AlF6
    Purity/%>99.9>99.9>99.999.9999.9999.99
    下载: 导出CSV
  • [1] 苏杰, 李亚智, 张代龙, 等. 原位自生TiB2颗粒增强2024-T4铝基复合材料断裂行为数值模拟[J]. 复合材料学报, 2018, 35(1):132-141.

    SU Jie, LI Yazhi, ZHANG Dailong, et al. Numerical simulation of fracture behavior of in-situ TiB2 particle reinforced 2024-T4 aluminum matrix composites[J]. Acta Materiae Compositae Sinica,2018,35(1):132-141(in Chinese).
    [2] SUN J, WANG X Q, CHEN Y, et al. Effect of Cu element on morphology of TiB2 particles in TiB2/Al-Cu composites[J]. Transactions of Nonferrous Metals Society of China,2020,30(5):1148-1156. doi: 10.1016/S1003-6326(20)65285-2
    [3] LIU J, LIU Z W, DONG Z W, et al. On the preparation and mechanical properties of in situ small-sized TiB2/Al-4.5Cu composites via ultrasound assisted RD method[J]. Journal of Alloys and Compounds,2018,765:1008-1017. doi: 10.1016/j.jallcom.2018.06.303
    [4] MA Y, ADDAD A, JI G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J]. Acta Materialia,2020,185:287-299.
    [5] 童攀, 林立, 王全兆, 等. 颗粒尺寸对B4C增强铝基中子吸收材料界面反应与力学性能的影响[J]. 复合材料学报, 2019, 36(4):927-937.

    TONG Pan, LIN Li, WANG Quanzhao, et al. Effects of particle size on interfacial reaction and mechanical properties of B4C reinforced aluminum matrix neutron absorber materials[J]. Acta Materiae Compositae Sinica,2019,36(4):927-937(in Chinese).
    [6] VIVEKANANDA A S, BALASIVANANDHA P S, PASKARAMOORTHY R. Influence of process parameters of aluminothermic reduction process on grain refinement of in-situ Al/TiB2 composites[J]. Materials Today: Proceedings,2018,5(1):1071-1075. doi: 10.1016/j.matpr.2017.11.184
    [7] SUSWAGATA P, PRASANTA S, GOUTAM S. Tribological characteristics of stir-cast Al-TiB2 metal matrix composites in lubricated condition using taguchi based grey relation analysis[J]. Materials Today: Proceedings,2018,5(11):23629-23637. doi: 10.1016/j.matpr.2018.10.152
    [8] SURESH S, SHENBAG N, MOORTHI V. Aluminium-titanium diboride (Al-TiB2) metal matrix composites: Challenges and opportunities[J]. Procedia Engineering,2012,38:89-97. doi: 10.1016/j.proeng.2012.06.013
    [9] LIU K, NABAWY A M, CHEN X G. Influence of TiB2 nanoparticles on elevated-temperature properties of Al-Mn-Mg 3004 alloy[J]. Transactions of Nonferrous Metals Society of China,2017,27(4):771-778. doi: 10.1016/S1003-6326(17)60088-8
    [10] ZHAO Y, ZHENG Q L, LIU Z W. Ultrasound-induced distribution of nano-sized TiB2 particles within α-Al grains during solidification of Al-7Si alloy[J]. Materials Letters,2020,274:128030. doi: 10.1016/j.matlet.2020.128030
    [11] MENG J S, SHI X P, ZHANG S J, et al. Friction and wear properties of TiN-TiB2-Ni based composite coatings by argon arc cladding technology[J]. Surface and Coatings Technology,2019,374:437-447. doi: 10.1016/j.surfcoat.2019.06.015
    [12] AGRAWAL S, GHOSE A K, CHAKRABARTY I. Effect of rotary electromagnetic stirring during solidification of in-situ Al-TiB2 composites[J]. Materials & Design,2017,113:195-206.
    [13] REN S B, HE X B, QU X H, et al. Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCP/Al composites[J]. Composites Science and Technology,2007,67(10):2103-2113. doi: 10.1016/j.compscitech.2006.11.006
    [14] 童慧, 胡正飞, 祁昌亚, 等. Ca含量对SiC/Al泡沫复合材料性能和结构的影响[J]. 复合材料学报, 2016, 33(11):2576-2583.

    TONG Hui, HU Zhengfei, QI Changya, et al. Effect of Ca content on property and structure of SiC/Al foam composites[J]. Acta Materiae Compositae Sinica,2016,33(11):2576-2583(in Chinese).
    [15] XUE J, WANG J, HAN Y F, et al. Behavior of CeO2 additive in in-situ TiB2 particles reinforced 2014 Al alloy composite[J]. Transactions of Nonferrous Metals Society of China,2012,22(5):1012-1017. doi: 10.1016/S1003-6326(11)61277-6
    [16] 赵瑞锋, 刘忠侠, 杨明生, 等. Mg对原位合成TiB2/Al-7Si复合材料的微观组织及力学性能的影响[J]. 中国有色金属学报, 2009, 19(9):1548-1554. doi: 10.3321/j.issn:1004-0609.2009.09.003

    ZHAO Ruifeng, LIU Zhongxia, YANG Mingsheng, et al. Effect of Mg on microstructures and mechanical properties of in-situ TiB2/Al-7Si composite[J]. The Chinese Journal of Nonferrous Metals,2009,19(9):1548-1554(in Chinese). doi: 10.3321/j.issn:1004-0609.2009.09.003
    [17] PAI B C, RAMANI G, PILLAI R M, et al. Role of magnesium in cast aluminium alloy matrix composites[J]. Journal of Materials Science,1995,30(8):1903-1911. doi: 10.1007/BF00353012
    [18] SINGH S, PAL K. Influence of surface morphology and UFG on damping and mechanical properties of composite reinforced with spinel MgAl2O4-TiB2 core-shell microcomposites[J]. Materials Characterization,2017,123:244-255. doi: 10.1016/j.matchar.2016.11.042
    [19] RAJAN T P D, NARAYAN P K, PILLAI R M, et al. Solidification and casting/mould interfacial heat transfer characteristics of aluminum matrix composites[J]. Composites Science and Technology,2007,67(1):70-78. doi: 10.1016/j.compscitech.2006.03.028
    [20] CHOI S W, CHO H S, KUMAI S. Effect of the precipitation of secondary phases on the thermal diffusivity and thermal conductivity of Al-4.5Cu alloy[J]. Journal of Alloys and Compounds,2016,688:897-902. doi: 10.1016/j.jallcom.2016.07.137
    [21] WU L, ZHOU C, LI X F, et al. Microstructural evolution and mechanical properties of cast high-Li-content TiB2/Al-Li-Cu composite during heat treatment[J]. Journal of Alloys and Compounds,2018,739:270-279. doi: 10.1016/j.jallcom.2017.12.126
    [22] 张文龙, 陈嘉颐, 吴桢干, 等. (Al2O3)f/Al复合材料在强界面结合下的疲劳损伤模式[J]. 复合材料学报, 2003, 20(1):106-110.

    ZHANG Wenlong, CHEN Jiayi, WU Zhengan, et al. Fatigue damage mode of (Al2O3)f/Al composite[J]. Acta Materiae Compositae Sinica,2003,20(1):106-110(in Chinese).
    [23] 中国国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People’s Republic of China. Metallic material-tensile testing Part 1: method of test at room temperature: GB/T 228.1—2010[S]. Beijing: China Standards Press, 2011(in Chinese).
    [24] WANG M, WANG Y, LIU J, et al. Effects of Zn content on microstructures and mechanical properties of in-situ TiB2/Al-Zn-Mg-Cu composites subjected to hot extrusion[J]. Materials Science and Engineering A,2019,742:364-372. doi: 10.1016/j.msea.2018.11.030
    [25] ZHANG L L, ZHENG Q J, JIANG H X, et al. Interfacial energy between Al melt and TiB2 particles and efficiency of TiB2 particles to nucleate α-Al[J]. Scripta Materialia,2019,160:25-28. doi: 10.1016/j.scriptamat.2018.09.042
    [26] ZHAO B W, YANG Q, WU L, et al. Effects of nanosized particles on microstructure and mechanical properties of an aged in-situ TiB2/Al-Cu-Li composite[J]. Materials Science and Engineering A,2019,742:573-583. doi: 10.1016/j.msea.2018.11.032
    [27] DAVARI M, JABBAREH M A. Modeling the interfacial energy of embedded metallic nanoparticles[J]. Journal of Physics and Chemistry of Solids,2020,138:109261. doi: 10.1016/j.jpcs.2019.109261
    [28] 郭建, 沈宁福. SiC颗粒增强Al基复合材料中有害界面反应的控制[J]. 材料科学与工程, 2002, 20(4):605-608, 600.

    GUO Jian, SHEN Ningfu. Control of detrimental interface reaction in SiCP/Al composite materials[J]. Materials Science & Engineering,2002,20(4):605-608, 600(in Chinese).
    [29] 邱丰, 佟昊天, 沈平, 等. 综述: SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1):87-100.

    QIU Feng, TONG Haotian, SHEN Ping, et al. Overview: SiC/Al interface reaction and interface structure evolution mechanism[J]. Acta Metallurgica Sinica,2019,55(1):87-100(in Chinese).
    [30] LIU R, YIN X M, FENG K X, et al. First-principles calculations on Mg/TiB2 interfaces[J]. Computational Materials Science,2018,149:373-378. doi: 10.1016/j.commatsci.2018.03.045
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1044
  • HTML全文浏览量:  466
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 录用日期:  2020-08-06
  • 网络出版日期:  2020-08-17
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回