留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空航天轻质复合材料壳体结构研究进展

熊健 李志彬 刘惠彬 冯丽娜 赵云鹏 孟凡壹

熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6): 1629-1650. doi: 10.13801/j.cnki.fhclxb.20210107.002
引用本文: 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6): 1629-1650. doi: 10.13801/j.cnki.fhclxb.20210107.002
XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1629-1650. doi: 10.13801/j.cnki.fhclxb.20210107.002
Citation: XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1629-1650. doi: 10.13801/j.cnki.fhclxb.20210107.002

航空航天轻质复合材料壳体结构研究进展

doi: 10.13801/j.cnki.fhclxb.20210107.002
基金项目: 国家自然科学基金(12072091;12061160461);黑龙江省自然科学基金(YQ2019A003);中国科协青年托举人才项目(YESS20160190)
详细信息
    通讯作者:

    熊健,博士,教授,博士生导师,研究方向为先进复合材料结构设计理论及力学机制  E-mail:jx@hit.edu.cn

  • 中图分类号: V214.8;V414.8;TB332

Advances in aerospace lightweight composite shell structure

  • 摘要: 轻质复合材料壳体结构具有轻质、高强及可设计性等优点,被广泛地应用在航空航天结构中。轻质复合材料壳体结构包含网格壳体结构、加筋壳体结构和夹芯壳体结构。本文首先针对这几种轻质复合材料壳体结构从制备方法到力学性能表征方面进行概述,制备方法主要包括纤维缠绕工艺、模压工艺和嵌锁组装工艺等,力学性能方面包含失效模式、动力学性能和阻尼性能等。另外,对夹芯结构的多功能化和智能化进行了简要介绍。其次,总结了轻质壳体结构的应用现状,特别是在航空航天领域,包括火箭适配器、火箭级间段、卫星承力筒、导弹整流罩、飞机舱段等结构。最后对未来发展方向进行了探讨。

     

  • 图  1  网格筒成型工艺

    Figure  1.  Fabrication process of grid cylinder ((a) Winding process of grid cylinder[9]; (b) Winding process of grid cone[9]; (c) Braided craft[15])

    图  2  模具组装纤维带缠绕工艺[14]

    Figure  2.  Mold assembly fiber belt winding process[14]((a) Steel mandrel with guide pins; (b) External steel mold and winding process; (c) External resin mold and winding process; (d) Cure process; (e) Side walls shape after curing)

    图  3  网格壳体结构三维失效机制图[33]

    Figure  3.  Three-dimensional failure mechanism map of lattice cylinder[33]

    H—Length of the cylinder; tr—Thickness of the stiffener; d—Height of the stiffener; D—Diameter of the cylinder

    图  4  网格筒可能的失效模式[33]

    Figure  4.  Possible failure modes of grid cylinder[33]((a) Global buckling; (b) Local in-plane buckling; (c) Local out-of-plane buckling; (d) Euler buckling)

    图  5  网格筒失效实物图:(a)分层失效[24];(b)局部面外屈曲[34]

    Figure  5.  Failure modes photograph of grid cylinder: (a) Delamination failure; (b) Local out-of-plane buckling

    图  6  Kagome层级加筋筒[39]

    Figure  6.  Hierarchical Kagome stiffened cylinder[39]

    图  7  加筋筒成型工艺[45]

    Figure  7.  Fabrication process of stiffened cylinder[45] ((a) Silicone rubber mold; (b) Kagome grid stiffened composite cylinder)

    图  8  机器自动缠绕[46]

    Figure  8.  Robotic filament winding[46]

    图  9  避免端部失效的格栅筒[57]

    Figure  9.  Grid stiffened cylinder to avoid end failure[57] ((a) Isogrid stiffened cylinder with flanges; (b) Isogrid stiffened cylinder with wrapped ends)

    图  10  加筋筒失效机制图[57]

    Figure  10.  Failure mechanism map of stiffened cylinder[57]

    ts—Hickness of facesheet; dr—Height of the stiffener

    图  11  碳纤维复合材料Kagome格栅夹芯圆柱筒[62]

    Figure  11.  CFRP Kagome sandwich cylinder[62] ((a) Integrated forming of outer facesheet and core; (b) Fabricated sandwich cylinder with Kagome lattice core)

    图  12  金字塔点阵夹芯圆柱壳的嵌锁工艺[65]

    Figure  12.  Interlocking process of pyramidal lattice sandwich cylinder[65]((a) Transverse and longitudinal reinforcements; (b) Interlocking process of both reinforcements; (c) Assembled pyramidal lattice cylindrical core; (d) Adhesive process of inner and outer facesheets with pyramidal truss cores)

    图  13  金字塔点阵圆柱壳芯子实物图[65]

    Figure  13.  Photograph of pyramidal lattice sandwich cylinder[65]

    图  14  点阵夹芯筒组装模具图[67-68]

    Figure  14.  Assembly image of lattice sandwich cylinder[67-68]((a) Diagram of mold assembly; (b) Parts drawing, (c) Assembly drawing)

    图  15  玻璃纤维金字塔点阵圆柱壳[67]

    Figure  15.  GFRP pyramid lattice cylinder[67] ((a) Integrated forming of outer facesheet and core; (b) Detail diagram after gluing inner facesheet)

    图  16  波纹夹芯筒制备过程[69]

    Figure  16.  Fabrication process of corrugated sandwich cylinder

    图  17  轴向和环向波纹夹芯筒[69]

    Figure  17.  Sandwich cylinder with longitudinal and circumferential corrugated cores[69]

    图  18  褶皱筒模压法制备过程[71]

    Figure  18.  Fabrication process of foldcore sandwich cylinder by hot pressing[71]

    图  19  褶皱筒的热压—缠绕混合工艺[72]

    Figure  19.  Hybrid manufacturing process of hot pressing and winding process for foldcore sandwich cylinder[72]

    图  20  圆柱壳载荷质量效率比较[73]

    Figure  20.  Comparison of load mass efficiency of cylinders[73]

    Ψ—Weight index; Π—Load index; W—Overall structural weight; $\overline \rho $—Relative density; Ef—Modulus of facesheet

    图  21  轴压载荷下碳纤维增强树脂复合材料Kagome格栅圆柱壳失效模式[62]

    Figure  21.  Failure mode of carbon fiber resinforced plastic Kagome lattice sandwich cylinder under axial compression[62] ((a) Local bulge; (b) Shear failure of the inner; (c) Rippling of outer skin)

    图  22  金字塔点阵圆柱壳可能的失效模式[65]

    Figure  22.  Possible failure modes of pyramidal lattice sandwich cylinder[65] ((a) Euler buckling; (b) Global buckling; (c) Local buckling between reinforcements; (d) Face crushing)

    图  23  点阵夹芯筒失效机制图[65]

    Figure  23.  Failure model map of pyramidal lattice sandwich cylinder[65]

    L—Length of the cylinder; tf—Thickness of facesheet, R—Radius of the cylinder; EB—Euler buckling; LB—Local buckling; FC—Face crushing

    图  24  碳纤维金字塔点阵圆柱壳破坏模式[67]

    Figure  24.  Failure modes of CFRP pyramid lattice sandwich cylinder[67]((a) Outer facesheet crushing; (b) Fibers cracking and crushing of inner facesheet)

    图  25  修正的Lakes材料模量-阻尼性能图[83]

    Figure  25.  Modified Lakes’ modulus-damping factor map of some common materials[83]

    图  26  波纹夹芯筒失效机制图[69]

    Figure  26.  Failure model maps of corrugated sandwich cylinder[69]((a) Longitudinal type; (b) Circumferential type)

    图  27  V型到S型褶皱结构的转变[7]

    Figure  27.  Transition from V-shaped to S-shaped fold structure[7]((a) V-shaped fold structure; (b) V-shaped fold structure with platform; (c) S-shaped fold structure)

    图  28  折纸圆柱筒结构设计与实现[90]

    Figure  28.  Design and prototype of origami-inspired cylindrical structures[90]

    图  29  嵌锁工艺制备蜂窝夹芯筒和截锥筒

    Figure  29.  Honeycomb sandwich cylingder and truncated cone fabricated by interlocking process ((a) Honeycomb sandwich cylinder[94]; (b) Truncated cone structure[95])

    图  30  泡沫夹芯筒失效模式[96]

    Figure  30.  Failure modes of foam core sandwich cylinder[96]((a) Global buckling; (b) Local buckling)

    图  31  玻璃纤维增强树脂肋条-泡沫混合夹芯筒[99]

    Figure  31.  GFRP stiffener-foam hybrid sandwich cylinder[99]

    图  32  夹芯圆柱壳的声辐射特性[102]

    Figure  32.  Acoustic radiation characteristics of a sandwich cylindrical shell[102]

    STL—Sound transmission loss; fr—Ring frequency; fcr—Critical frequency; fco—Coincidence frequency

    图  33  复合材料轻质壳体结构在火箭及导弹中的应用

    Figure  33.  Applications in rockets and missiles of lightweight composite shell structure((a) Internal view of the interstage[9]; (b) External view of the interstage[9]; (c) Rocket adapter[9]; (d) Missile fairing[121])

    图  34  复合材料轻质壳体结构在卫星中的应用

    Figure  34.  Application in satellite of lightweight composite shell structure((a) ESA project plans for the satellite central tube[122]; (b) ESA project plans for the satellite boom[122]; (c) Satellite platform[9])

    图  35  复合材料轻质壳体结构中的椭圆形和六边形概念承力筒[21-22]

    Figure  35.  Elliptic and hexagonal concept of central tube of lightweight composite shell structure[21-22]

    图  36  复合材料轻质壳体结构在飞机中的应用

    Figure  36.  Applications in aircraft of lightweight composite shell structure((a) Aircraft cabin[123]; (b) Boeing 787 fuselage rear section[124])

    图  37  “海翼”号深海滑翔机[125]

    Figure  37.  Sea Wing underwater glider[125]

  • [1] WEI Xingyu, XIONG Jian, WANG Jie, et al. New advances in fiber-reinforced composite honeycomb materials[J]. Science China Technological Sciences,2020,50(8):1123-1124.
    [2] 范华林, 金丰年, 方岱宁, 等. 格栅结构力学性能研究进展[J]. 力学进展, 2008, 38(1):35-52. doi: 10.3321/j.issn:1000-0992.2008.01.002

    FAN Hualin, JIN Fengnian, FANG Daining, et al. Structural mechanics of lattice grids[J]. Advances in Mechanics,2008,38(1):35-52(in Chinese). doi: 10.3321/j.issn:1000-0992.2008.01.002
    [3] 吴林志, 熊健, 马力, 等. 新型复合材料点阵结构的研究进展[J]. 力学进展, 2012, 42(1):41-67.

    WU Linzhi, XIONG Jian, MA Li, et al. Processes in the study on novel composite sandwich panels with lattice truss cores[J]. Advances In Mechanics,2012,42(1):41-67(in Chinese).
    [4] 邓云飞, 曾宪智, 周翔, 等. 复合材料褶皱夹芯结构研究进展[J]. 复合材料学报, 2020, 37(12):2966-2983.

    DENG Yunfei, ZENG Xianzhi, ZHOU Xiang, et al. Research progress for the composite sandwich structure with foldcore[J]. Acta Materiae Compositae Sinica,2020,37(12):2966-2983(in Chinese).
    [5] ZHOU J M, WANG Y, LIU J Y, et al. Temperature effects on the compressive properties and failure mechanisms of composite sandwich panel with Y-shaped cores[J]. Composites Part A: Applied Science and Manufacturing,2018,114:72-85. doi: 10.1016/j.compositesa.2018.08.003
    [6] LIU J L, LIU J Y, MEI J, et al. Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores[J]. Composites Science and Technology,2018,159:87-102. doi: 10.1016/j.compscitech.2018.01.026
    [7] 熊健, 杜昀桐, 杨雯, 等. 轻质复合材料夹芯结构设计及力学性能最新进展[J]. 宇航学报, 2020, 41(6):749-760.

    XIONG Jian, DU Yuntong, YANG Wen, et al. Research progress on design and mechanical properties of lightweight composite sandwich structures[J]. Journal of Astronautics,2020,41(6):749-760(in Chinese).
    [8] VASILIEV V V, RAZIN A F. Anisogrid composite lattice structures for spacecraft and aircraft applications[J]. Composite Structures,2006,76:182-189. doi: 10.1016/j.compstruct.2006.06.025
    [9] VASILIEV V V, BARYNIN V A, RAZIN A F. Anisogrid composite lattice structures-Development and aerospace applications[J]. Composite Structures,2012,94:1117-1127. doi: 10.1016/j.compstruct.2011.10.023
    [10] 陈小平, 杨杰, 刘建超. 复合材料网格结构的研究现状[J]. 宇航材料工艺, 2009, 39(2):6-11. doi: 10.3969/j.issn.1007-2330.2009.02.002

    CHEN Xiaoping, YANG Jie, LIU Jianchao. Actuality research on composite grid structures[J]. Aerospace Materials and Technology,2009,39(2):6-11(in Chinese). doi: 10.3969/j.issn.1007-2330.2009.02.002
    [11] 王世勋, 石玉红, 张希, 等. 复合材料格栅结构研究进展与应用[J]. 宇航材料工艺, 2017, 47(1):5-12.

    WANG Shixun, SHI Yuhong, ZHANG Xi, et al. Application and research progress of composite lattice grids structure[J]. Aerospace Materials and Technology,2017,47(1):5-12(in Chinese).
    [12] 韩振宇, 张鹏, 郑天宇, 等. 纤维增强树脂复合材料网格结构成型工艺研究进展[J]. 复合材料学报, 2020, 37(4):845-858.

    HAN Zhenyu, ZHANG Peng, ZHANG Tianyu, et al. Research progress grid structure of forming process of fiber reinforced polymer composite[J]. Acta Materiae Compo-sitae Sinica,2020,37(4):845-858(in Chinese).
    [13] 王博, 郝鹏, 田阔. 加筋薄壳结构分析与优化设计研究进展[J]. 计算力学学报, 2019, 36(1):1-12.

    WANG Bo, HAO Peng, TIAN Kuo. Recent advances in structural analysis and optimization of stiffened shells[J]. Chinese Journal of Computational Mechanics,2019,36(1):1-12(in Chinese).
    [14] SAKATA K, BEN G. Development of fast fabrication method for cylindrical-shaped grids and mechanical properties of CFRP pressure vessel reinforced with cylindrical-shaped grids[J]. Advanced Composite Materials,2016,25(s1):1-16.
    [15] KYOSEV Y. Advances in braiding technology: Specialized techniques and applications[M]. UK: Woodhead Publishing, 2016.
    [16] HAO M R, HU Y C, WANG B, et al. Mechanical behavior of natural fiber-based isogrid lattice cylinder[J]. Composite Structures,2017,176:117-123. doi: 10.1016/j.compstruct.2017.05.028
    [17] VASILIEV V V, BARYNIN V A, RASIN A F. Anisogrid lattice structures-Survey of development and application[J]. Composite Structures,2001,54(2):361-370.
    [18] DUTTA P K, BAILEY D M, TSAI S W, et al. Composite grids for reinforcement of concrete structures[R]. Construction Engineering Research Lab (Army) Champaign Il, 1998.
    [19] BELLINI C, SORRENTINO L. Characterization of isogrid structure in GFRP[J]. Frattura ed Integrita Strutturale,2018,12(46):319-331. doi: 10.3221/IGF-ESIS.46.29
    [20] FADAVIAN A, DAVAR A, JAM J E, et al. Buckling strength optimization of fabrication factors of composite lattice cylinders using experimental-statistical method (Taguchi)[J]. Polymer Composites,2019,40(5):1850-1861. doi: 10.1002/pc.24946
    [21] LOPATIN A V, MOROZOV E V, SHATOV A V. Buckling and vibration of composite lattice elliptical cylindrical shells[J]. Proceedings of the Institution of Mechanical Engineers. Part L, Journal of Materials: Design and Application,2019,233(7):1255-1266. doi: 10.1177/1464420717736549
    [22] KHAKHLENKOVA A A, MOSKVICHEV E V, LOPATIN A V. Finite element modeling of a multifaceted composite lattice anisogrid payload adapter for launching several spacecrafts[J]. Journal of Physics: Conference Series,2020,1546(1):012131.
    [23] 周涛. 二维网格复合材料点阵结构及其刚度与强度分析[D]. 长沙: 国防科学技术大学, 2007.

    ZHOU Tao. Analysis of stiffness and strength of two-dimension grid composite lattice structures[D]. Changsha: National University of Defence Technology, 2007(in Chinese).
    [24] 郑青. 新型格栅结构设计及力学性能研究[D]. 长沙: 国防科技大学, 2017.

    ZHENG Qing. Design and mechanical properties of novel lattice structures[D]. Changsha: National University of Defence Technology, 2017(in Chinese).
    [25] ZHENG Q, JU S, JIANG D Z. Anisotropic mechanical properties of diamond lattice composites structures[J]. Composite Structures,2014,109:23-30. doi: 10.1016/j.compstruct.2013.10.053
    [26] ZHENG Q, JIANG D Z, HUANG C F, et al. Analysis of failure loads and optimal design of composite lattice cylinder under axial compression[J]. Composite Structures,2015,131:885-894. doi: 10.1016/j.compstruct.2015.06.047
    [27] KIM Y, KIM P, KIM H, et al. An optimization of composite lattice cylinder using the approximate method[J]. Advanced Composite Materials,2019,28(3):287-320. doi: 10.1080/09243046.2018.1510590
    [28] BELARDI V G, FANELLI P, VIVIO F. Structural analysis and optimization of anisogrid composite lattice cylindrical shells[J]. Composites Part B: Engineering,2018,139:203-215. doi: 10.1016/j.compositesb.2017.11.058
    [29] TOTARO G, GÜRDAL Z. Optimal design of composite lattice shell structures for aerospace applications[J]. Aerospace Science and Technology,2009,13:157-164. doi: 10.1016/j.ast.2008.09.001
    [30] ZHANG Y H, XUE Z Y, CHEN L M, et al. Deformation and failure mechanisms of lattice cylindrical shells under axial loading[J]. International Journal of Mechanical Sciences,2009,51:213-222. doi: 10.1016/j.ijmecsci.2009.01.006
    [31] TOTARO G. Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with triangular cells[J]. Composite Structures,2012,94:446-452. doi: 10.1016/j.compstruct.2011.08.002
    [32] TOTARO G. Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with hexagonal cells[J]. Composite Structures,2013,95:403-410. doi: 10.1016/j.compstruct.2012.07.011
    [33] LI M, LAI C L, ZHENG Q, et al. Multi-failure analyses of carbon fiber reinforced anisogrid lattice cylinders[J]. Aerospace Science and Technology,2020(100):105777.
    [34] 赖长亮. 复合材料格栅结构力学性能分析与制备[D]. 西安: 西北工业大学, 2015.

    LAI Changliang. Mechanical properties and fabrication of composite grid structures[D]. Xi'an: Northwestern Polytechnical University, 2015(in Chinese).
    [35] LAI C L, WANG J B, LIU C, et al. A flexible tooling and local consolidation process to manufacture 1D lattice truss composite structure[J]. Composites Science and Technology,2015,113:63-70. doi: 10.1016/j.compscitech.2015.03.018
    [36] LAI C L, WANG J B, LIU C. Parameterized finite element modeling and buckling analysis of six typical composite grid cylindrical shells[J]. Applied Composite Materials,2014,21(5):739-758. doi: 10.1007/s10443-013-9376-x
    [37] MOROZOV E V, LOPATIN A V, NESTEROV V A. Finite-element modelling and buckling analysis of anisogrid composite lattice cylindrical shells[J]. Composite Structures,2011,93(2):308-323. doi: 10.1016/j.compstruct.2010.09.014
    [38] BURAGOHAIN M, VELMURUGAN R. Study of filament wound grid-stiffened composite cylindrical structures[J]. Composite Structures,2011,93:1031-1038. doi: 10.1016/j.compstruct.2010.06.003
    [39] LI M, SUN F F, LAI C L, et al. Fabrication and testing of composite hierarchical isogrid stiffened cylinder[J]. Composites Science and Technology,2018,157:152-159. doi: 10.1016/j.compscitech.2018.01.040
    [40] WU H, LAI C L, SUN F F, et al. Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing[J]. Acta Astronautica,2018,145:268-274. doi: 10.1016/j.actaastro.2018.01.064
    [41] ZHAO Y N, CHEN M J, YANG F, et al. Optimal design of hierarchical grid-stiffened cylindrical shell structures based on linear buckling and nonlinear collapse analyses[J]. Thin-Walled Structures,2017,119:315-323. doi: 10.1016/j.tws.2017.06.019
    [42] WANG B, HAO P, LI G, et al. Optimum design of hierarchical stiffened shells for low imperfection sensitivity[J]. Acta Mechanica Sinica,2014,30(3):391-402. doi: 10.1007/s10409-014-0003-3
    [43] HAO P, WANG B, TIAN K, et al. Fast procedure for non-uniform optimum design of stiffened shells under buckling constraint[J]. Structural and Multidisciplinary Optimization,2017,55(4):1503-1516. doi: 10.1007/s00158-016-1590-3
    [44] KIM T D. Fabrication and testing of composite isogrid stiffened cylinder[J]. Composite Structures,1999,45(1):1-6. doi: 10.1016/S0263-8223(98)00124-X
    [45] HE J X, REN M F, SUN S Y, et al. Failure prediction on advanced grid stiffened composite cylinder under axial compression[J]. Composite Structures,2011,93(7):1939-1946. doi: 10.1016/j.compstruct.2011.02.003
    [46] SORRENTINO L, MARCHETTI M, BELLINI C, et al. Manufacture of high performance isogrid structure by robotic filament winding[J]. Composite Structures,2017,164:43-50. doi: 10.1016/j.compstruct.2016.12.061
    [47] SORRENTINO L, ANAMATEROS E, BELLINI C, et al. Robotic filament winding: An innovative technology to manufacture complex shape structural parts[J]. Composite Structures,2019,220:699-707. doi: 10.1016/j.compstruct.2019.04.055
    [48] 于伟. 新型干式煤气柜结构的非线性屈曲与稳定研究[D]. 重庆: 重庆大学, 2016.

    YU Wei. Study on nonlinear buckling and stability of new typical dry gasholder[D]. Chongqing: Chongqing University, 2016(in Chinese).
    [49] JAUNKY N, KNIGHT N F, AMBUR D R. Optimal design of general stiffened composite circular cylinders for global buckling with strength constraints[J]. Composite Structures,1998,41:243-252. doi: 10.1016/S0263-8223(98)00020-8
    [50] KIM T D. Fabrication and testing of thin composite isogrid stiffened panel[J]. Composite structures,2000,49(1):21-25. doi: 10.1016/S0263-8223(99)00122-1
    [51] ZHANG Z F, CHEN H R, YE L. Progressive failure analysis for advanced grid stiffened composite plate/shells[J]. Composite Structures,2008,86(1-3):45-54.
    [52] ZHANG Z F, CHEN H R, YE L. A stiffened plate element model for advanced grid stiffened composite plate/shells[J]. Journal of Composite Materials,2011,45:187. doi: 10.1177/0021998310371877
    [53] SHI S S, SUN Z, REN M F, et al. Buckling resistance of grid-stiffened carbon fiber thin shell structures[J]. Composite Part B: Engineering,2013,45(1):888-896. doi: 10.1016/j.compositesb.2012.09.052
    [54] SHI S S, SUN Z, REN M F, et al. Buckling response of advanced grid stiffened carbon-fiber composite cylindrical shells with reinforced cutouts[J]. Composites: Part B: Engineering,2013,44:26-33. doi: 10.1016/j.compositesb.2012.07.044
    [55] TIAN K, MA X T, LI Z C, et al. A multi-fidelity competitive sampling method for surrogate-based stacking sequence optimization of composite shells with multiple cutouts[J]. International Journal of Solids and Structures,2020,193-194:1-12.
    [56] HAO P, WANG B, TIAN K, et al. Simultaneous buckling design of stiffened shells with multiple cutouts[J]. Engineering Optimization,2017,49(7):1116-1132.
    [57] LI M, FAN H L. Multi-failure analysis of composite isogrid stiffened cylinders[J]. Composites Part A: Applied Science and Manufacturing,2018,107:248-259. doi: 10.1016/j.compositesa.2018.01.010
    [58] SHAHGHOLIAN-GHAHFAROKHI D, RAHIMI G. Buckling load prediction of grid-stiffened composite cylindrical shells using the vibration correlation technique[J]. Composites Science and Technology,2018,167:470-481. doi: 10.1016/j.compscitech.2018.08.046
    [59] SORRENTINO L, MARCHETTI M, BELLINI C, et al. Design and manufacturing of an isogrid structure in composite material: Numerical and experimental results[J]. Composite Structures,2016,143:189-201. doi: 10.1016/j.compstruct.2016.02.043
    [60] 孙国钧. 加筋复合材料圆柱壳的屈曲和初始后屈曲的研究[J]. 复合材料学报, 1991(3):97-104.

    SUN Guojun. The buckling and initial post-buckling behavior of stiffened composite circular cylinders[J]. Acta Materiae Compositae Sinica,1991(3):97-104(in Chinese).
    [61] SINGER J, BARUCH M, HARARI O. On the stability of eccentrically stiffened cylindrical shells under axial compression[J]. International Journal of Solids and Structures,1967,3(4):445-470. doi: 10.1016/0020-7683(67)90001-7
    [62] FAN H L, FANG D N, CHEN L M, et al. Manufacturing and testing of a CFRC sandwich cylinder with Kagome cores[J]. Composites Science and Technology,2009,69:2695-2700. doi: 10.1016/j.compscitech.2009.08.012
    [63] 陈立明, 戴政, 范华林, 等. 轻质点阵夹层圆柱壳的设计与分析[J]. 清华大学学报(自然科学版), 2012, 52(4):489-493.

    CHEN Liming, DAI Zheng, FAN Hualin, et al. Design and analysis of light-weight lattice sandwich cylinders[J]. Journal of Tsinghua University (Science and Technology),2012,52(4):489-493(in Chinese).
    [64] CHEN L M, FAN H L, SUN F F, et al. Improved manufacturing method and mechanical performances of carbon fiber reinforced lattice-core sandwich cylinder[J]. Thin-Walled Structures,2013,68:75-84. doi: 10.1016/j.tws.2013.03.002
    [65] 熊健. 轻质复合材料新型点阵结构设计及其力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    XIONG Jian. Design and mechanical behavior of lightweight composite innovative lattice truss structures[D]. Harbin: Harbin Institute of Technology, 2012(in Chinese).
    [66] YIN S, CHEN H Y, WU Y B, et al. Introducing composite lattice core sandwich structure as an alternative proposal for engine hood[J]. Composite Structures,2018,201:131-140. doi: 10.1016/j.compstruct.2018.06.038
    [67] 彭亮. 复合材料金字塔点阵圆柱壳制备工艺及轴向压缩性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    PENG Liang. Manufacturing and axial compression testing of composite cylinders with pyramidal lattice cores[D]. Harbin: Harbin Institute of Technology, 2012(in Chinese).
    [68] YANG J S, XIONG J, MA L, et al. Study on vibration damping of composite sandwich cylindrical shell with pyramidal truss-like cores[J]. Composite Structures,2014,117:362-372. doi: 10.1016/j.compstruct.2014.06.042
    [69] XIONG J, FENG L N, GHOSH R, et al. Fabrication and mechanical behavior of carbon fiber composite sandwich cylindrical shells with corrugated cores[J]. Composite Structures,2015,156:307-319.
    [70] YANG J S, XIONG J, MA L, et al. Modal response of all-composite corrugated sandwich cylindrical shells[J]. Composites Science and Technology,2015,115:9-20. doi: 10.1016/j.compscitech.2015.04.015
    [71] LIU B, SUN Y G, SUN Y, et al. Fabrication and com-pressive behavior of carbon-fiber-reinforced cylindrical foldcore sandwich structure[J]. Composites Part A: Applied Science and Manufacturing,2019,118:9-19. doi: 10.1016/j.compositesa.2018.12.011
    [72] LI W X, ZHENG Q, FAN H L, et al. Fabrication and mechanical testing of ultralight folded lattice-core sandwich cylinders[J]. Engineering,2020,6(2):196-204. doi: 10.1016/j.eng.2019.11.008
    [73] EVANS A G, HUTCHINSON J W, FLECK N A, et al. The topological design of multifunctional cellular metals[J]. Progress in Materials Science,2001,46:309-327. doi: 10.1016/S0079-6425(00)00016-5
    [74] LIU T, DENG Z C, LU T J. Minimum weights of pressurized hollow sandwich cylinders with ultralight cellular cores[J]. International Journal of Solids and Structures,2007,44:3231-3266. doi: 10.1016/j.ijsolstr.2006.09.018
    [75] LIU T, DENG Z C, LU T J. Bi-functional optimization of actively cooled, pressurized hollow sandwich cylinders with prismatic cores[J]. Journal of the Mechanics and Physics of Solids,2007,55:2565-2602. doi: 10.1016/j.jmps.2007.04.007
    [76] SHAHGHOLIAN-GHAHFAROKHI D, RAHIMI G, ZAREI M, et al. Free vibration analyses of composite sandwich cylindrical shells with grid cores: experimental study and numerical simulation[J/OL]. Mechanics Based Design of Structures and Machines, 2020: 1-20. [2021-04-29]. https://doi.org/10.1080/15397734.2020.1725565.
    [77] SUN F F, FAN H L, ZHOU C W, et al. Equivalent analysis and failure prediction of quasi-isotropic composite sandwich cylinder with lattice core under uniaxial compression[J]. Composite Structures,2013,101:180-190. doi: 10.1016/j.compstruct.2013.02.005
    [78] SUN F F, LAI C L, FAN H L. Failure mode maps for composite anisogrid lattice sandwich cylinders under fundamental loads[J]. Composites Science and Technology,2017,152:149-158. doi: 10.1016/j.compscitech.2017.09.003
    [79] SUN F F, WANG P, LI W X, et al. Effects of circular cutouts on mechanical behaviors of carbon fiber reinforced lattice-core sandwich cylinder[J]. Composites Part A: Applied Science and Manufacturing,2017,100:313-323. doi: 10.1016/j.compositesa.2017.05.029
    [80] HAN Y, WANG P, FAN H, et al. Free vibration of CFRC lattice-core sandwich cylinder with attached mass[J]. Composites Science and Technology,2015,118:226-235. doi: 10.1016/j.compscitech.2015.09.007
    [81] ZHANG H, SUN F F, FAN H L, et al. Free vibration behaviors of carbon fiber reinforced lattice-core sandwich cylinder[J]. Composites Science and Technology,2014,100:26-33. doi: 10.1016/j.compscitech.2014.05.030
    [82] JIANG S, SUN F F, FAN H L, et al. Fabrication and testing of composite orthogrid sandwich cylinder[J]. Compo-sites Science and Technology,2017,142:171-179. doi: 10.1016/j.compscitech.2017.02.009
    [83] 杨金水. 新型轻质复合材料夹芯结构的振动阻尼特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    YANG Jinshui. Vibration damping characteristics of lightweight composite innovative sandwich structures[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [84] YANG J S, MA L, CHAVES-VARGAS M, et al. Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels[J]. Composites Science & Technology,2017,147:89-99.
    [85] YANG J S, MA L, SCHRÖDER K U, et al. Experimental and numerical study on the modal characteristics of hybrid carbon fiber composite foam filled corrugated sandwich cylindrical panels[J]. Polymer Testing,2018,68:8-18. doi: 10.1016/j.polymertesting.2018.03.040
    [86] LI W X, SUN F F, WEI W Y, et al. Fabrication and testing of composite corrugated-core sandwich cylinder[J]. Composites Science and Technology,2018,156:127-135. doi: 10.1016/j.compscitech.2017.12.033
    [87] SU P B, HAN B, YANG M, et al. Axial compressive collapse of ultralight corrugated sandwich cylindrical shells[J]. Materials & Design,2018,160:325-337.
    [88] LI W X, SUN F F, WANG P, et al. A novel carbon fiber reinforced lattice truss sandwich cylinder: Fabrication and experiments[J]. Composites Part A: Applied Science and Manufacturing,2016,81:313-322. doi: 10.1016/j.compositesa.2015.11.034
    [89] DU Y T, SONG C P, XIONG J, et al. Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami[J]. Composites Science and Technology,2019,174:94-105. doi: 10.1016/j.compscitech.2019.02.019
    [90] DU Y T, KELLER T, SONG C P, et al. Design and foldability of miura-based cylindrical origami structures[J]. Thin-Walled Structures,2020:107311. doi: 10.1016/j.tws.2020.107311
    [91] HUTCHINSON J W, HE M Y. Buckling of cylindrical sandwich shells with metal foam cores[J]. International Journal of Solids and Structures,2000,37(46-47):6777-6794. doi: 10.1016/S0020-7683(99)00314-5
    [92] ROSLAN M N, YAHYA M Y, AHMAD Z, et al. Energy absorption capacity of basalt sandwich composite cylinder subjected to axial compression loadings[C]//Materials Science Forum. Trans Tech Publications LTD, 2018, 917: 7-11.
    [93] CHEN L M, ZHANG J, DU B, et al. Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load[J]. Thin-Walled Structures,2018,127:333-343. doi: 10.1016/j.tws.2017.10.048
    [94] DU B, CHEN L M, WU W J, et al. A novel hierarchical thermoplastic composite honeycomb cylindrical structure: Fabrication and axial compressive properties[J]. Composites Science and Technology,2018,164:136-145. doi: 10.1016/j.compscitech.2018.05.021
    [95] LIU H C, CHEN L M, CAO J J, et al. Axial compression deformability and energy absorption of hierarchical thermoplastic composite honeycomb graded structures[J]. Composite Structures,2020,254:112851. doi: 10.1016/j.compstruct.2020.112851
    [96] PAN D R, CHEN L, ZHAO Q L, et al. Local buckling theoretical calculation method of the FRP foam sandwich cylinder under axial compression[J]. Composite Structures,2020,246:112371. doi: 10.1016/j.compstruct.2020.112371
    [97] LIANG M, LI X, LIN Y, et al. Influence of multi-layer core on the blast response of composite sandwich cylinders[J]. International Journal of Applied Mechanics,2020,12(2):2050018.
    [98] LI J F, QIN Q H, ZHANG J X. Internal blast resistance of sandwich cylinder with lattice cores[J]. International Journal of Mechanical Sciences,2021,191:106107. doi: 10.1016/j.ijmecsci.2020.106107
    [99] TAO J, LI F, ZHU R J, et al. Compression properties of a novel foam-core sandwich cylinder reinforced with stiffeners[J]. Composite Structures,2018,206:499-508. doi: 10.1016/j.compstruct.2018.08.085
    [100] ZHU Y X, CHEN Z Y, JIANG Y B, et al. Design, fabrication and stiffness analysis of a novel GFRP sandwiched pipe with stiffened core[J]. Thin-Walled Structures,2020,156:106982. doi: 10.1016/j.tws.2020.106982
    [101] GU F W, CHEN L, ZHU X L, et al. Fabrication and uniaxial compression mechanical behavior of composite corrugated-core sandwich cylinder with thin-wall metal liner[J/OL]. Mechanics of Advanced Materials and Structures, 2020: 1-14. [2021-04-29]. https://doi.org/10.1080/15376494.2020.1800154.
    [102] ISAAC C W, PAWELCZYK M, WRONA S. Comparative study of sound transmission losses of sandwich compo-site double panel walls[J]. Applied Sciences,2020,10(4):1543. doi: 10.3390/app10041543
    [103] DANESHJOU K, TALEBITOOTI R, TARKASHVAND A. Investigation on sound transmission through thick-wall cylindrical shells using 3D-theory of elasticity in the presence of external and mean air-gap flow[J]. Journal of Vibration and Control,2016,24(5):975-1000.
    [104] TALEBITOOTI R, ZARASTVAND M R, GHEIBI M R. Acoustic transmission through laminated composite cylindrical shell employing third order shear deformation theory in the presence of subsonic flow[J]. Composite Structures,2016(157):95-110.
    [105] DANESHJOU K, TALEBITOOTI R, TARKASHVAND A. An exact solution of three-dimensional elasticity for sound transmission loss through FG cylinder in presence of subsonic external flow[J]. International Journal of Mechanical sciences,2017(120):105-119.
    [106] TALEBITOOTI R, DANESHJOU K, TARKASHVAND A. Incorporating the Havriliak-Negami model in wave propagation through polymeric viscoelastic core in a laminated sandwich cylinder[J]. Thin-Walled Structures,2019(134):460-474.
    [107] 瞿叶高. 基于区域分解-谱边界元法的复合材料结构振动与声辐射问题研究[D]. 上海: 上海交通大学, 2014.

    QU Yegao. Investigation on vibration and sound radiation problems of composite structures based on domain decomposition and spectral boundary element methods[D]. Shanghai: Shanghai Jiao Tong University, 2014(in Chinese).
    [108] QU Y G, PENG Z K, ZHANG W M, et al. Nonlinear vibro-acoustic behaviors of coupled sandwich cylindrical shell and spring-mass-damper systems[J]. Mechanical Systems and Signal Processing,2019,124:254-274. doi: 10.1016/j.ymssp.2019.01.048
    [109] QU Y G, LIANG D, MENG G. Vibration and acoustic waves of multilayered cylindrical shells carrying internal components attached by nonlinear compliant mounts[J]. European Journal of Mechanics-A/Solids,2020,83:104032. doi: 10.1016/j.euromechsol.2020.104032
    [110] 孙山有铭, 冯上升, 卢天健. 承载/散热3D打印夹心圆筒结构对流传热特性研究[C]//中国力学大会论文集(CCTAM 2019). 中国力学学会、浙江大学: 中国力学学会, 2019: 14.

    SUN Sanyouming, FENG Shangsheng, LU Tianjian. Convective heat transfer characteristics of 3d printed sandwich-walled tube with thermo-mechanical multifunctionality[C]// Proceedings of The Chinese Society of Theoretical and Applied Mechanics (CCTAM 2019). Chinese Society of Theoretical and Applied Mechanics, Zhejiang University, 2019: 14(in Chinese).
    [111] MOHAMMADIMEHR M, MEHRABI M. Electro-thermo-mechanical vibration and stability analyses of double-bonded micro composite sandwich piezoelectric tubes conveying fluid flow[J]. Applied Mathematical Modelling,2018:0307904X18301240.
    [112] ZHOU J X, DENG Z C, XU D L. Dynamic response of prismatic metallic sandwich tubes under combined internal shock pressure and thermal load[J]. Composite Structures,2012,94(1):166-176.
    [113] WANG Q W, LIN M, ZENG M. Effect of lateral fin profiles on turbulent flow and heat transfer performance of internally finned tubes[J]. Applied Thermal Engineering,2009,29(14-15):3006-3013. doi: 10.1016/j.applthermaleng.2009.03.016
    [114] SUN S Y M, FENG S S, ZHANG Q C, et al. Forced convection in additively manufactured sandwich-walled cylinders with thermo-mechanical multifunctionality[J]. International Journal of Heat and Mass Transfer,2020,149:119161. doi: 10.1016/j.ijheatmasstransfer.2019.119161
    [115] QIN Z M. Magneto-thermo-elasticity of an electroconductive circular cylindrical shell featuring nonlinear deformations[J]. International Journal of Engineering Science,2010,48(12):1797-1810. doi: 10.1016/j.ijengsci.2010.09.021
    [116] ASADI H, AKBARZADEH A H, CHEN Z T, et al. Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys[J]. Smart Materials & Structures,2015,24(4):045022.
    [117] MIKHASEV G I, ALTENBACH H, KORCHEVSKAYA E A. On the influence of the magnetic field on the eigenmodes of thin laminated cylindrical shells containing magnetorheological elastomer[J]. Composite Structures,2014,113:186-196. doi: 10.1016/j.compstruct.2014.02.031
    [118] AREFI M, KARROUBI R, IRANI-RAHAGHI M. Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer[J]. Applied Mathematics and Mechanics,2016,37(7):821-834. doi: 10.1007/s10483-016-2098-9
    [119] MESKINI M, GHASEMI A R. Electro-magnetic potential effects on free vibration of rotating circular cylindrical shells of functionally graded materials with laminated composite core and piezo electro-magnetic two face sheets[J/OL]. Journal of Sandwich Structures & Materials, 2020: 1-26. [2021-04-29]. https://doi.org/10.1177/1099636220909751.
    [120] NOOR A K, VENNERI S L, PAUL D B, et al. Structures technology for future aerospace systems[J]. Computers and Structures,2000,74(5):507-519. doi: 10.1016/S0045-7949(99)00067-X
    [121] 杜善义, 章继峰, 张博明. 先进复合材料格栅结构(AGS)应用与研究进展[J]. 航空学报, 2007(2):419-424. doi: 10.3321/j.issn:1000-6893.2007.02.033

    DU Shanyi, ZHANG Jifeng, ZHANG Boming. Overview of application and research on advanced composite grid structures[J]. Acta Aeronautica et Astronautica Sinica,2007(2):419-424(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.02.033
    [122] GIUSTO G, TOTARO G, SPENA P, et al. Composite grid structure technology for space applications[J]. Materials Today: Proceedings,2020,34:332-340.
    [123] VASILIEV V V, RAZIN A F. Development of geodesic composite aircraft structures[C]. Central Research Institute of Special Machinery, ICAS, 2012.
    [124] 燕瑛, 刘玉佳, 廖宝华, 等. 先进复合材料格栅结构与大型飞机[J]. 航空制造技术, 2009(2):26-29. doi: 10.3969/j.issn.1671-833X.2009.02.001

    YAN Ying, LIU Yujia, LIAO Baohua, et al. Advanced composite grid structure and large aircraft[J]. Aeronautical Manufacturing Technology,2009(2):26-29(in Chinese). doi: 10.3969/j.issn.1671-833X.2009.02.001
    [125] 王晓旭, 张典堂, 钱坤, 等. 深海纤维增强树脂复合材料圆柱耐压壳力学性能的研究进展[J]. 复合材料学报, 2020(37):16-26.

    WANG Xiaoxu, ZHANG Diantang, QIAN Kun, et al. Research progress on mechanical properties of deep-sea fiber reinforced resin composite cylindrical pressure shells[J]. Acta Materiae Compositae Sinica,2020(37):16-26(in Chinese).
  • 加载中
图(37)
计量
  • 文章访问数:  5041
  • HTML全文浏览量:  1547
  • PDF下载量:  934
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-11
  • 录用日期:  2020-12-20
  • 网络出版日期:  2021-01-08
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回