留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电纺制备聚丙烯腈/聚偏氟乙烯复合纤维膜及其空气过滤性能

李俊 伍文静 孙金玺 钱琦一 唐逸飞 张明洋

李俊, 伍文静, 孙金玺, 等. 电纺制备聚丙烯腈/聚偏氟乙烯复合纤维膜及其空气过滤性能[J]. 复合材料学报, 2021, 38(3): 741-748. doi: 10.13801/j.cnki.fhclxb.20200814.001
引用本文: 李俊, 伍文静, 孙金玺, 等. 电纺制备聚丙烯腈/聚偏氟乙烯复合纤维膜及其空气过滤性能[J]. 复合材料学报, 2021, 38(3): 741-748. doi: 10.13801/j.cnki.fhclxb.20200814.001
LI Jun, WU Wenjing, SUN Jinxi, et al. Preparation of polyacrylonitrile/polyvinylidene fluoride composite fiber membrane by electrospinning and its air filtration performance[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 741-748. doi: 10.13801/j.cnki.fhclxb.20200814.001
Citation: LI Jun, WU Wenjing, SUN Jinxi, et al. Preparation of polyacrylonitrile/polyvinylidene fluoride composite fiber membrane by electrospinning and its air filtration performance[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 741-748. doi: 10.13801/j.cnki.fhclxb.20200814.001

电纺制备聚丙烯腈/聚偏氟乙烯复合纤维膜及其空气过滤性能

doi: 10.13801/j.cnki.fhclxb.20200814.001
基金项目: 河南省科技攻关项目(192102310211);河南工程学院博士基金(D2018006)
详细信息
    通讯作者:

    李俊,博士,讲师,研究方向为吸波材料、静电纺丝纳米纤维膜材料  E-mail:lijun@haue.edu.cn

  • 中图分类号: TQ34

Preparation of polyacrylonitrile/polyvinylidene fluoride composite fiber membrane by electrospinning and its air filtration performance

  • 摘要: 以聚偏氟乙烯(PVDF)为芯层,聚丙烯腈(PAN)为皮层,通过同轴法静电纺丝技术制备PAN/PVDF纳米复合纤维膜。通过向纤维膜的皮层中加入纳米硅粉、气相白炭黑、硅溶胶三种不同的纳米粒子和改变皮芯层溶液挤出速度对PAN/PVDF纳米纤维膜进行结构优化。同时,采用BET、SEM、水接触角、纤维强度仪等对纤维膜的孔结构参数、表面形貌、亲水性、力学性能等进行研究。结果表明:在皮层中加入硅溶胶后的溶液导电能力达到32.90 μL/cm,PAN/PVDF纤维膜力学性能最好,纵向断裂强度达到13.02 MPa。含有硅溶胶的口罩布的品质因子达到0.0236,远大于纯聚丙烯(PP)无纺布的品质因子(0.0127),过滤性显著提高。

     

  • 图  1  不同皮层溶液(PAN、Si/PAN、G/PAN、S/PAN)和芯层溶液(PVDF、TiO2/PVDF)的电导率

    Figure  1.  Conductivity of different skin layer solutions (PAN, Si/PAN, G/PAN, S/PAN) and core layer solutions (PVDF, TiO2/PVDF)

    图  2  PAN/PVDF复合纤维膜的吸-脱附曲线及孔容分布

    Figure  2.  Absorption-desorption curves and pore volume distribution of PAN/PVDF composite fiber membranes

    图  3  PAN/PVDF复合纤维膜的SEM图像

    Figure  3.  SEM images of PAN/PVDF composite fiber membranes ((a), (d) PAN/PVDF5; (b), (e) PAN/PVDF2; (c), (f) PAN/PVDF6)

    图  4  PAN/PVDF复合纤维膜的水接触角

    Figure  4.  Water contact angle of PAN/PVDF composite fiber membranes

    表  1  静电纺不同纤维膜时对应的皮层溶液和芯层溶液的组成及推进速度

    Table  1.   Composition and advancing speed of skin layer solution and core layer solution when preparing different fiber membranes by electrospinning

    Serial numberCortical speed/(mL·h−1)Core speed/(mL·h−1)Cortical solutionCore solution
    PAN/PVDF1 0.6 0.6 PAN PVDF
    PAN/PVDF2 0.6 0.6 Si/PAN TiO2/PVDF
    PAN/PVDF3 0.4 0.8 Si/PAN TiO2/PVDF
    PAN/PVDF4 0.8 0.4 Si/PAN TiO2/PVDF
    PAN/PVDF5 0.6 0.6 G/PAN TiO2/PVDF
    PAN/PVDF6 0.6 0.6 S/PAN TiO2/PVDF
    Notes: PAN—Polyacrylonitrile; PVDF—Polyvinylidene fluoride; Si—Nano-silica powder; G—Fumed silica; S—Silica sol; The unit of cortical speed and core speed is mL/h.
    下载: 导出CSV

    表  2  PAN/PVDF复合纤维膜的纤维膜孔结构参数

    Table  2.   Pore structure parameters of PAN/PVDF composite fiber membranes

    Serial numberSBET/(m2·g−1)Smic/(m2·g−1)Sext/(m2·g−1)Sext/SBET/%Vtotal/(cm3·g−1)
    PAN/PVDF1 3.453 0 3.453 100.00 6.982×10−3
    PAN/PVDF2 8.802 0.092 8.711 98.97 3.938×10−2
    PAN/PVDF3 3.764 0 3.764 100.00 2.846×10−2
    PAN/PVDF4 10.354 1.886 8.468 81.78 4.025×10−2
    PAN/PVDF5 46.749 18.715 28.034 59.97 3.432×10−1
    PAN/PVDF6 8.523 1.597 6.926 81.26 3.760×10−2
    Notes: SBET—Specific surface area of fiber membrane; Smic—Micropore specific surface area; Sext—External pore surface area; Sextt/SBET—Percentage of external pores in overall surface area; Vtotal—Total pore volume of fiber membrane.
    下载: 导出CSV

    表  3  PAN/PVDF复合纤维膜的断裂强度和断裂伸长率

    Table  3.   Breaking strength and elongation at break of PAN/PVDF composite fiber membranes

    Serial numberLongitudinal breaking strength/MPaLongitudinal elongation at break/%Transverse breaking strength/MPaTransverse elongation at break/%
    PAN/PVDF1 6.19±0.30 161.50±8.08 2.33±0.12 218.41±10.22
    PAN/PVDF2 8.25±0.41 304.30±15.29 5.90±0.28 401.70±14.23
    PAN/PVDF3 4.31±0.22 88.30±4.42 2.43±0.14 136.99±9.38
    PAN/PVDF4 14.01±0.65 424.30±17.87 8.60±0.36 390.20±19.84
    PAN/PVDF5 7.20±0.36 186.16±9.76 3.56±0.16 131.68±12.34
    PAN/PVDF6 13.02±0.56 222.69±10.14 10.83±0.54 190.20±14.56
    下载: 导出CSV

    表  4  PAN/PVDF-PP和PP口罩布的过滤性能

    Table  4.   Filtration performance of PAN/PVDF-PP and PP non-woven fabric

    Serial numberFiltration resistance/mm H2OFiltration efficiency/%Quality factor
    PP 3.3 4.10 0.0127
    PAN/PVDF-PP1 151.5 93.28 0.0178
    PAN/PVDF-PP2 223.8 97.36 0.0162
    PAN/PVDF-PP3 132.6 95.68 0.0236
    下载: 导出CSV
  • [1] FISHER J E, LOFT S, ULRIK C S, et al. Physical activity, air pollution, and the risk of asthma and chronic obstructive pulmonary disease[J]. American Journal of Respiratory and Critical Care Medicine,2016,194(7):855-865. doi: 10.1164/rccm.201510-2036OC
    [2] BARHATE R S, RAMAKRISHNA S. Nano fibrous filtering media: Filtration problems and solution from tiny materials[J]. Journal of Membrane Science,2007,296(1):1-8.
    [3] ZHANG S, LIU H, YIN X, et al. Anti-deformed polyacrylonitrile/polysulfone composite membrane with binary structures for effective air filtration[J]. ACS Applied Materials & Interfaces,2016,8(12):8086-8095.
    [4] 于翔, 张雪寅, 李如洋, 等. TiO2/静电纺PAN基碳复合材料的制备及光催化性能[J]. 复合材料学报, 2020, 37(12):3177-3183.

    YU Xiang, ZHANG Xueyin, LI Ruyang, et al. Preparation and photocatalytic propreties of TiO2/electrospinning PAN-based carbon composite material[J]. Acta Materiae Compositae Sinica,2020,37(12):3177-3183(in Chinese).
    [5] 琚艳云, 陆志伟, 柳扬, 等. 纳米Ag-聚乙烯醇缩丁醛静电纺丝复合纳米纤维的制备及性能[J]. 复合材料学报, 2018, 35(2):418-425.

    JU Yanyun, LU Zhiwei, LIU Yang, et al. Preparation and characterization of nano Ag-polyvinyl butyral eletrospun composite nanofibers[J]. Acta Materiae Compositae Sinica,2018,35(2):418-425(in Chinese).
    [6] 魏楚, 钱晓明, 钱幺, 等. 空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能[J]. 复合材料学报, 2020, 37(7):1513-1521.

    WEI Chu, QIAN Xiaoming, QIAN Yao, et al. Preparation and properties of micro-nano polyacrylonitrile/sheath-core polyethylene-polypropylene bicomponent fiber multilayer composite filters[J]. Acta Materiae Compositae Sinica,2020,37(7):1513-1521(in Chinese).
    [7] WANG N, YANG Y, AL-DEYAB S S, et al. Ultra-light 3D nanofibre-nets binary structured nylon 6-polyacrylonitrile membranes for efficient filtration of fine particulate matter[J]. Journal of Materials Chemistry A,2015,3(47):23946-23954. doi: 10.1039/C5TA06543G
    [8] DING B, LI C, MIYAUCHI Y, et al. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology,2006,17(15):3685. doi: 10.1088/0957-4484/17/15/011
    [9] WANG C, OTANI Y. Removal of nanoparticles from gas streams by fibrous filters: A review[J]. Industrial & Engineering Chemistry Research,2012,52(1):5-17.
    [10] SAMBAER W, ZATLOUKAL M, KIMMER D. 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process[J]. Chemical Engineering Science,2011,66(4):613-623. doi: 10.1016/j.ces.2010.10.035
    [11] 王群旺, 雄杰, 张红萍, 等. PBS-SF核壳结构复合超细纤维膜的制备及性能[J]. 复合材料学报, 2011, 28(2):88-93.

    WANG Qunwang, XIONG Jie, ZHANG Hongping, et al. Preparation and properties of PBS-SF core-shell composite ultrafine fibrous membranes by coaxial electrospinning[J]. Acta Materiae Compositae Sinica,2011,28(2):88-93(in Chinese).
    [12] 赵兴雷. 空气过滤用高效低阻纳米纤维材料的结构调控及构效关系研究[D]. 上海: 东华大学, 2017.

    ZHAO Xinglei. Research on the structure regulation and structure-activity relationship of high-efficiency and low-resistance nanofiber materials for air filtration[D]. Shanghai: Donghua University, 2017(in Chinese).
    [13] WANG N, SI Y, WANG N, et al. Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration[J]. Separation and Purification Technology,2014,126:44-51. doi: 10.1016/j.seppur.2014.02.017
    [14] CHO D, NAYDICH A, FREY M W, et al. Further improvement of air filtration efficiency of cellulose filters coated with nanofibers via inclusion of electrostatically active nanoparticles[J]. Polymer,2013,54(9):2364-2372. doi: 10.1016/j.polymer.2013.02.034
    [15] ESSALHI M, KHAYET M. Self-Sustained webs of polyvinylidene fluoride electrospun nano-fibers: Effects of polymer concentration and desalination by direct contact membrane distillation[J]. Journal of Membrane Science, 2014, 454: 133-143.
    [16] LALIA B S, GUILLEN E, ARAFAT H A, et al. Nanocrystalline cellulose reinforced PVDF-HFP membranes for membrane distillation application[J]. Desalination, 2014, 332(1): 134-141.
    [17] DONG Z Q, MA X H, XU Z L, et al. Super hydrophobic PVDF-PTFE electro spun nano-fibrous membranes for desalination by vacuum membrane distillation[J]. Desalination,2014,347:175-183. doi: 10.1016/j.desal.2014.05.015
    [18] 王利娜, 娄辉清, 辛长征, 等. 空气过滤用电纺聚偏氟乙烯-聚丙烯腈/熔喷聚丙烯无纺布复合材料的制备及过滤性能[J]. 复合材料学报, 2019, 36(2):277-282.

    WANG Lina, LOU Huiqing, XIN Changzheng, et al. Preparation and filtration properties of electrospun poly(vinylidene fouoride)-polyacrylonitrile/melt-bolw polypropylene nonwoven composite filtration materials[J]. Acta Materiae Compositae Sinica,2019,36(2):277-282(in Chinese).
    [19] WANG Z, PAN Z J. Preparation of hierarchial structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration[J]. Applied Surface Science,2015,356:1168-1179. doi: 10.1016/j.apsusc.2015.08.211
    [20] 林松柏. 有机树脂/二氧化硅杂化高吸水性材料的研究[D]. 天津: 天津大学, 2004.

    LIN Songbai. Research on organic resin/silica hybrid super absorbent material[D]. Tianjin: Tianjin University, 2004(in Chinese).
    [21] 邢若飞. 多级孔石墨烯材料的构筑及性能研究[D]. 青岛: 青岛科技大学, 2019.

    XIN Ruofei. Research on the construction and performance of hierarchical graphene materials[D]. Qingdao: Qingdao University of Science and Technology, 2019(in Chinese).
    [22] MIT-UPPATHAM C, NITHITANAKUL M, SUPAPHOL P. Ultrafine electrospun ployamide-6 fibers: Effect of solution condition on morphology and average fiber diameter[J]. Macromolecular Chemistry and Physics,2004,205(17):2327-2338. doi: 10.1002/macp.200400225
    [23] LI D, XIA Y N. Electrospinning of nanofibers: Reinventing the wheel[J]. Advanced Materials,2004,16(14):1151-1170. doi: 10.1002/adma.200400719
    [24] BAUMGARTEN P K. Electrostatic spinning of acrylic microfibers[J]. Journal of Colloid and Interface Science,1971,36(1):71-79. doi: 10.1016/0021-9797(71)90241-4
    [25] ZHANG C, YUAN X, WU L, et al. Study on morphology of electrospun poly(vinyl alcohol) mats[J]. European Polymer Journal,2005,41(3):423-432. doi: 10.1016/j.eurpolymj.2004.10.027
    [26] JUN Z, HOU H Q, SCHAPER A, et al. Ploy-L-lactide nanofibers by electrospinning: Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology[J]. E-Polymers,2003,3(1):009.
    [27] GAO H C, YANG Y Q, AKAMPUMUZA O, et al. A low filtration resistance there-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture[J]. Environmental Science: Nano,2017,4(4):864-875. doi: 10.1039/C6EN00696E
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  1235
  • HTML全文浏览量:  738
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-28
  • 录用日期:  2020-08-01
  • 网络出版日期:  2020-08-14
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回