留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能

王娟 张法明 商彩云 张彬

王娟, 张法明, 商彩云, 等. 石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能[J]. 复合材料学报, 2020, 37(12): 3137-3148. doi: 10.13801/j.cnki.fhclxb.20200421.001
引用本文: 王娟, 张法明, 商彩云, 等. 石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能[J]. 复合材料学报, 2020, 37(12): 3137-3148. doi: 10.13801/j.cnki.fhclxb.20200421.001
WANG Juan, ZHANG Faming, SHANG Caiyun, et al. Tailoring of interface reaction, microstructure and compressive properties of graphene reinforced titanium alloy matrix composites[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3137-3148. doi: 10.13801/j.cnki.fhclxb.20200421.001
Citation: WANG Juan, ZHANG Faming, SHANG Caiyun, et al. Tailoring of interface reaction, microstructure and compressive properties of graphene reinforced titanium alloy matrix composites[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3137-3148. doi: 10.13801/j.cnki.fhclxb.20200421.001

石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能

doi: 10.13801/j.cnki.fhclxb.20200421.001
基金项目: 国家自然科学基金-航天先进制造技术研究联合基金(U1737103)
详细信息
    通讯作者:

    张法明,博士,副教授,博士生导师,研究方向为金属基复合材料,微纳米多孔金属 E-mail:fmzhang@seu.edu.cn

  • 中图分类号: TB331

Tailoring of interface reaction, microstructure and compressive properties of graphene reinforced titanium alloy matrix composites

  • 摘要: 将Ti6Al4V(TC4)粉末与少层石墨烯(GR)粉末进行三维机械旋转混合,实现了GR在TC4球形粉末表面的均匀包覆,经放电等离子烧结(SPS)得到增强相呈三维网络状分布的GR/TC4复合材料。对不同的SPS烧结温度、保温时间、升温速率和轴向压力对GR与钛基体原位界面反应程度的影响进行了研究,并对界面处不同GR/TC4比例的网状结构复合材料的物相结构、显微组织及室温压缩性能进行了系统性的研究。结果表明,烧结温度和升温速率是影响GR与基体反应程度的主要因素,压力主要影响材料致密度,低温高压快速烧结可以降低GR与基体的反应程度,但高比例的GR残留并没有带来力学性能的大幅提升。对于0.25wt%的GR添加量,GR的反应比例约为70%~80%能得到更加良好的异质界面的结合,获得综合力学性能优异的GR/TC4协同增强的钛合金基复合材料。GR在钛合金基体中的三维网络状分布能调控钛基复合材料的强度与塑性的矛盾。

     

  • 图  1  Ti6AI4V(TC4)粉末和石墨烯(GR)粉末形貌

    Figure  1.  Morphologies of Ti6AI4V (TC4) powder and graphene (GR) powder

    图  2  三维网状结构GR/TC4复合材料制备过程示意图

    Figure  2.  Schematic illustration of the fabrication procedure for 3D network structured GR/TC4 nanocomposites

    图  3  0.25wt% GR/TC4混合粉末SEM图片

    Figure  3.  SEM images of the 0.25wt% GR/TC4 mixed powder

    图  4  GR/TC4复合材料不同烧结条件下XRD图谱

    Figure  4.  XRD patterns of the GR/TC4 composites under different sintering conditions

    图  5  TC4和0.5wt% GR/TC4复合材料不同烧结条件下金相照片和SEM图像及EDS结果

    Figure  5.  Metallographic images and SEM images with inserted EDS results of marked spots of the TC4 and 0.5wt% GR/TC4 composites under different sintering conditions

    图  6  不同烧结条件下TC4和GR/TC4网状结构复合材料的压缩应力-应变曲线

    Figure  6.  Compressive stress-strain curves of the TC4 and GR/TC4 network structure composites under various sintering conditions

    图  7  0.25wt% GR/TC4复合材料不同烧结条件下压缩断口SEM图像

    Figure  7.  SEM images of the compressive fracture surfaces of 0.25wt% GR/TC4 composites under various sintering conditions

    图  8  0.25wt% GR/TC4复合材料不同烧结条件下TEM图像

    Figure  8.  TEM images of the 0.25wt% GR/TC4 composites under different sintering conditions

    图  9  GR与TC4反应程度随烧结温度、升温速率、保温时间变化的示意图

    Figure  9.  Schematic illustration of the reaction ratio of the GR with TC4 as a function of sintering temperature, heating rate and holding time

    表  1  TC4与GR/TC4网状结构复合材料在不同烧结条件下的压缩性能

    Table  1.   Compressive properties of the TC4 and GR/TC4 network structure composites under different sintering conditions

    SampleYield strength σ0.2/MPaCompressive strength σb/MPaFracture strain ε/%
    0.5wt%GR/TC4-800℃-50℃/min-10 min1 039 ± 51 509 ± 632.8 ± 0.6
    0.5wt%GR/TC4-900℃-50℃/min-10 min1 091 ± 21 782 ± 335.9 ± 0.2
    0.5wt%GR/TC4-1000℃-50℃/min-10 min1 148 ± 61 859 ± 536.5 ± 0.5
    0.5wt%GR/TC4-1050℃-50℃/min-10 min1 140 ± 41 842 ± 335.8 ± 0.4
    0.25wt%GR/TC4-1000℃-100℃/min-7 min1 056 ± 31 851 ± 438.9 ± 0.3
    0.25wt%GR/TC4-1000℃-100℃/min-10 min1 087 ± 51 914 ± 639.2 ± 0.5
    0.25wt%GR/TC4-1000℃-100℃/min-15 min1 086 ± 41 984 ± 541.3 ± 0.5
    0.25wt%GR/TC4-1050℃-50℃/min-7 min1 148 ± 31 773 ± 435.2 ± 0.2
    TC4-1000℃-100℃/min-7 min997 ± 21 709 ± 339.5 ± 0.4
    TC4-1000℃-100℃/min-10 min991 ± 31 628 ± 534.9 ± 0.3
    TC4-1050℃-50℃/min-7 min1 002 ± 41 621 ± 335.1 ± 0.6
    TC4-1000℃-100℃/min-15 min989 ± 31 613 ± 234.3 ± 0.3
    下载: 导出CSV
  • [1] 汤慧萍, 黄伯云, 刘咏, 等. 粉末冶金颗粒增强钛基复合材料研究进展[J]. 粉末冶金技术, 2004, 22(5):293-296. doi: 10.3321/j.issn:1001-3784.2004.05.008

    TANG Huiping, HUANG Baiyun, LIU Yong, et al. Progress in powder metallurgy particle reinforced Ti matrix composite[J]. Powder Metallurgy Technology,2004,22(5):293-296(in Chinese). doi: 10.3321/j.issn:1001-3784.2004.05.008
    [2] TJONG S C, MAI Y W. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology,2008,68(3):583-601.
    [3] 黄陆军, 耿林. 非连续增强钛基复合材料研究进展[J]. 航空材料学报, 2014, 34(4):126-138. doi: 10.11868/j.issn.1005-5053.2014.4.013

    HUANG Lujun, GENG Lin. Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2014,34(4):126-138(in Chinese). doi: 10.11868/j.issn.1005-5053.2014.4.013
    [4] GENG L, HUANG L J. High temperature properties of discontinuously reinforced titanium matrix composites: A review[J]. Acta Metallurgica Sinica,2014,27(5):787-797.
    [5] GOREES S, PETITCORPS Y L, MATAR S, et al. Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite[J]. Materials Science & Engineering A,2008,340(1):80-87.
    [6] MIN Y K, JAE S P, MIN K P, et al. Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti-6Al-4V composites[J]. Scripta Materialia,2012,66(7):487-490.
    [7] NID R, GENGL, ZHANG J, et al. Fabrication and tensile properties of in situ TiBw and TiCp hybrid-reinforced titanium matrix composites based on Ti-B4C-C[J]. Materials Science and Engineering: A,2008,478(1):291-296.
    [8] 吕维洁, 郭相龙, 王立强, 等. 原位自生非连续增强钛基复合材料的研究进展[J]. 航空材料学报, 2014, 34(4):139-146. doi: 10.11868/j.issn.1005-5053.2014.4.014

    LV Weijie, GUO Xianglong, WANG Liqiang, et al. Progress on in-situ discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2014,34(4):139-146(in Chinese). doi: 10.11868/j.issn.1005-5053.2014.4.014
    [9] HUANG L J, GENG L, PENG H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal[J]. Progress in Materials Science,2015,71:93-168. doi: 10.1016/j.pmatsci.2015.01.002
    [10] HUANGL J, GENGL, LIA B, et al. In situ TiBw/Ti-6Al-4V composites with novel reinforcement architecture fabricated by reaction hot pressing[J]. Scripta Materialia,2009,60(11):996-999.
    [11] HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the elastic behaviour of polycrystals[J]. Journal of the Mechanics/Physics of Solids,1962,10(4):343-352. doi: 10.1016/0022-5096(62)90005-4
    [12] TJONG S C, RRPORTS E R. Recent progress in the development and properties of novel metal matrix nanocompo-sites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering: R: Reports,2013,74(10):281-350. doi: 10.1016/j.mser.2013.08.001
    [13] LEE CG, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [14] STEURER P, WISSERT R, THOMANN R, et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide[J]. Macromolecular Rapid Communications,2010,30(4-5):316-327.
    [15] ZHU Y W, MURALIS, CAI W W, et al. Graphene-based materials: Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3823-3853.
    [16] 郭强, 赵蕾, 李赞, 等. 金属材料的石墨烯强韧化[J]. 中国材料进展. 2019, 38(3): 205-213.

    GUO Qiang, ZHAO Lei, LI Zan, et al. Strengthening and toughening of graphene-reinforced metal matrix composites[J].Materials China, 2019, 38(3): 205-213(in Chinese).
    [17] DONG L L, XIAO B, JINA L H, et al. Mechanisms of simultaneously enhanced strength and ductility of titanium matrix composites reinforced with nanosheets of graphene oxides[J]. Ceramics International,2019,45(15):19370-19379. doi: 10.1016/j.ceramint.2019.06.189
    [18] GURBUZ M, MUTUK T. Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites[J]. Journal of Composite Materials,2018,52(4):543-551. doi: 10.1177/0021998317745143
    [19] SNOG Y, CHEN Y, LIU WW, et al. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers[J]. Materials/Design,2016,109:256-263.
    [20] CAO H C, LIANG Y L. The microstructures and mechanical properties of graphene-reinforced titanium matrix composites[J]. Journal of Alloys and Compounds,2020,812:152057. doi: 10.1016/j.jallcom.2019.152057
    [21] CAO Z, WANG X, LI J, et al. Reinforcement with graphene nanoflakes in titanium matrix composites[J]. Journal of Alloys/Compounds,2017,696:498-502.
    [22] MU X N, CAI H N, ZHANG H M, et al. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy[J]. Materials Science& Engineering A,2018,725:541-548.
    [23] MU X N, ZHANG H M, CAI H N, et al. Microstructure evolution and superior tensile properties of low concentration graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science & Engineering A,2017,687:164-174.
    [24] HU Z, CHEN F, XU J, et al. Fabricating graphene-titanium composites by laser sintering PVA bonding graphene titanium coating: Microstructure and mechanical properties[J]. Composites Part B: Engineering,2018,134:133-140. doi: 10.1016/j.compositesb.2017.09.069
    [25] MU X N, CAI H N, ZHANG H M, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites[J]. Carbon,2018,137:146-155. doi: 10.1016/j.carbon.2018.05.013
    [26] SUN C, ZHANG X, ZHAO N Q, et al. Influence of spark plasma sintering temperature on the microstructure and strengthening mechanisms of discontinuous three-dimensional graphene like network reinforced Cu matrix composites[J]. Materials Science & Engineering A,2019(756):82-91.
    [27] ZHANG X, SHI C S, LIU E Z, et al. High-strength graphene network reinforced copper matrix composites achieved by architecture design and grain structure regulation[J]. Materials Science & Engineering A,2019(762):138063.
    [28] XU T L, ZHOU S S, CUI S Q, et al. Three-dimensional carbon fiber-graphene network for improved thermal conductive properties of polyamide-imide composites[J]. Composites Part B: Engineering,2019(178):107495.
    [29] 邹君玉. 石墨烯/纯铝复合材料的制备及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZOU Junyu. The preparation and properties of graphene reinforced pure aluminum composites[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1203
  • HTML全文浏览量:  535
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-17
  • 录用日期:  2020-04-10
  • 网络出版日期:  2020-04-21
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回