留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能自支撑CuS/SnS2锂电池负极材料

张鹏 刘洋 陈明华 孙凤莲

张鹏, 刘洋, 陈明华, 等. 高性能自支撑CuS/SnS2锂电池负极材料[J]. 复合材料学报, 2021, 38(3): 871-878. doi: 10.13801/j.cnki.fhclxb.20200921.002
引用本文: 张鹏, 刘洋, 陈明华, 等. 高性能自支撑CuS/SnS2锂电池负极材料[J]. 复合材料学报, 2021, 38(3): 871-878. doi: 10.13801/j.cnki.fhclxb.20200921.002
ZHANG Peng, LIU Yang, CHEN Minghua, et al. High-performance self-supporting CuS/SnS2 lithium battery anode material[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 871-878. doi: 10.13801/j.cnki.fhclxb.20200921.002
Citation: ZHANG Peng, LIU Yang, CHEN Minghua, et al. High-performance self-supporting CuS/SnS2 lithium battery anode material[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 871-878. doi: 10.13801/j.cnki.fhclxb.20200921.002

高性能自支撑CuS/SnS2锂电池负极材料

doi: 10.13801/j.cnki.fhclxb.20200921.002
基金项目: 国家自然科学基金(51604090);黑龙江省自然科学基金资助项目(LH2020E089)
详细信息
    通讯作者:

    刘洋,博士,副教授,硕士生导师,研究方向为微电子封装、新材料研发 E-mail:yang_liu@hrbust.edu.cn

  • 中图分类号: TB383.1

High-performance self-supporting CuS/SnS2 lithium battery anode material

  • 摘要: 过渡金属硫化物作为锂电池负极材料具有极高比容量,但其制备的电极普遍存在导电性差、体积变化大等问题,本研究设计了一种新型的自支撑CuS/SnS2镂空片状锂电池负极材料,以导电碳布作为基底,生长包覆CuS/SnS2镂空纳米片,具备特殊的纳米包覆结构及双金属协同效应,使其在保持较高比容量的同时具备良好的循环稳定性,整体电化学性能优异。研究不同Cu/Sn含量对CuS/SnS2负极材料电化学性能的影响,最佳配比的CuS/SnS2负极材料在0.2 A·g−1电流密度下循环50次后比容量为1480 mAh·g−1,库伦效率稳定在99.5%,在2 A·g−1电流密度下循环200次后比容量仍能保持在697 mAh·g−1,库伦效率为99.8%。

     

  • 图  1  CuS/SnS2负极材料的制备流程

    Figure  1.  Prepare process of CuS/SnS2 anode material

    TAA—Thioacetamide

    图  2  SnS2 (a)和CuS/SnS2 ((b)~(e))负极材料的SEM图像

    Figure  2.  SEM images of and SnS2 (a) and CuS/SnS2 anode materials ((b)–(e))

    图  3  SnS2 (a)和CuS/SnS2负极材料的SEM图像

    Figure  3.  SEM images of and SnS2 (a) and CuS/SnS2 anode materials ((b)–(e))

    图  4  CuS/SnS2负极材料的TEM、选区电子衍射和HRTEM图像

    Figure  4.  TEM, selected area electron diffraction and HRTEM images of CuS/SnS2 anode material

    图  5  SnS2和CuS/SnS2负极材料的XRD图谱

    Figure  5.  XRD patterns of SnS2 and CuS/SnS2 anode material

    图  6  SnS2和CuS/SnS2负极材料的电化学性能

    Figure  6.  Electrochemical performance of SnS2 and CuS/SnS2 anode materials ((a) Cyclic voltammetric curve of 5% CuS/SnS2 (Scanning rate=0.1 mV/s); (b) Charge and discharge curve (Scanning rate=0.1 mV/s); (c) Charge and discharge curve (Scanning rate=0.1 mV/s); (d) Rate capability test under different current density; (e) Cycle performance (0.2 A/g))

    图  7  SnS2和CuS/SnS2负极材料的循环性能(电流密度为2 A/g)

    Figure  7.  Cycle performance of SnS2 and CuS/SnS2 anode materials (Current density of 2 A/g)

  • [1] MOMMA T, SHIRAISHI N, YOSHIZAWA A, et al. SnS2 anode for rechargeable lithium battery[J]. Journal of Power Sources,2001,97-98:198-200.
    [2] WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. Journal of Physical Chemistry C,2007,111(40):14925-14931.
    [3] SHI L, LI D, YAO P, et al. SnS2 nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium-ion batteries[J]. Small,2018,14(41):1802716.
    [4] REN X, WANG J, ZHU D, et al. Sn-C bonding riveted snse nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes[J]. Nano Energy,2018,54:322-330.
    [5] WANG H, JIANG X, CHAI Y, et al. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries[J]. Journal of Power Sources,2018,379:191-196.
    [6] ZHOU M, LU F, SHEN X S, et al. One-pot construction of three dimensional CoMoO4/Co3O4 hybrid nanostructures and their application in supercapacitors[J]. Journal of Materials Chemistry A,2015,3(42):21201-21210.
    [7] JIA B, CHEN W, LUO J, et al. Construction of MnO2 artificial leaf with atomic thickness as highly stable battery anodes[J]. Advanced Materials,2020,32(1):1906582.
    [8] ZHOU X, WAN L J, GUO Y G. Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries[J]. Small,2013,9(16):2684-2688.
    [9] KOBAYASHI N, INDEN Y, ENDO M. Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery[J]. Journal of Power Sources,2016,326:235-241.
    [10] OUYANG Y, ZHU X, LI F, et al. Silicon@nitrogen-doped porous carbon fiber composite anodes synthesized by an in-situ reaction collection strategy for high-performance lithium-ion batteries[J]. Applied Surface Science,2019,475:211-218.
    [11] ZHOU Y, YAN D, XU H, et al. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries[J]. Nano Energy,2015,12:528-537.
    [12] MAO M, CUI C, WU M, et al. Flexible rest nanosheets/n-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery[J]. Nano Energy,2018,45:346-352.
    [13] LU F, ZHOU M, LI W, et al. Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance[J]. Nano Energy,2016,26:313-323.
    [14] CHEN Y, LU Z, ZHOU L, et al. Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries[J]. Energy & Environmental Science,2012,5(7):7898-7902.
    [15] LIU J, ZHANG Y, ZHANG L, et al. Graphitic carbon nitride (g-C3N4)-derived n-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials,2019,31(24):1901261.
    [16] CHUNGA J S, SOHN H J. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries[J]. Journal of Power Sources,2002,108(1-2):226-231.
    [17] BALOGUN M S, QIU W, JIAN J, et al. Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(41):23205-23215.
    [18] YIN L, CHENG R, SONG Q, et al. Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets composite as highly efficient anode for lithium ion batteries[J]. Electrochimica Acta,2019,293:408-418.
    [19] HUANG J, WEI Z, LIAO J, et al. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2[J]. Journal of Energy Chemistry,2019,33:100-124.
    [20] YUAN H, KONG L, LI T, et al. A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion[J]. Chinese Chemical Letters,2017,28(12):2180-2194.
    [21] WANG X, GAO K, YE X, et al. Close-packing of hierarchically structured C@Sn@C nanofibers for high-performance Li-ion battery with large gravimetric and volumetric energy densities[J]. Chemical Engineering Journal,2018,344:625-632.
    [22] WANG C, ZHANG Y, LI Y, et al. Construction of uniform SnS2/ZnS heterostructure nanosheets embedded in graphene for advanced lithium-ion batteries[J]. Journal of Alloys and Compounds,2020,820:153147.
    [23] JIANG Y, WEI M, FENG J, et al. Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets[J]. Energy & Environmental Science,2016,9(4):1430-1438.
    [24] LI R, MIAO C, YU L, et al. Novel self-assembled SnO2@SnS2 hybrid microspheres as potential anode materials for lithium-ion batteries[J]. Materials Letters,2020,272:127851.
    [25] ZHANG P, LIU Y, ZHOU M, et al. Rationally designed C/Co9S8@SnS2 nanocomposite as a highly efficient anode for lithium-ion batteries[J]. Nanotechnology,2020,31(39):395401.
    [26] MAJUMDER S, SHAO M, DENG Y, et al. Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium-sulfur batteries[J]. Journal of Power Sources,2019,431:93-104.
    [27] CROGUENNEC L, PALACIN M R. Recent achievements on inorganic electrode materials for lithium-ion batteries[J]. Journal of the American Chemical Society,2015,137(9):3140-3156.
    [28] KIM H, CHOI W, YOON J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries[J]. Chemical Reviews,2020,120(14):6934-6976.
    [29] LI B, WANG Y, YANG S. A material perspective of rechargeable metallic lithium anodes[J]. Advanced Energy Materials,2018,8(13):1702296.
    [30] FENG C, ZHANG L, WANG Z, et al. Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries[J]. Journal of Power Sources,2014,269(10):550-555.
    [31] CHEN Q, LU F, XIA Y, et al. Interlayer expansion of few-layered mo-doped SnS2 nanosheets grown on carbon cloth with excellent lithium storage performance for lithium ion batteries[J]. Journal of Materials Chemistry A,2017,5(8):4075-4083.
    [32] ZHOU J, QIN J, ZHAO N, et al. Salt-template-assisted synthesis of robust 3D honeycomb-like structured MoS2 and its application as a lithium-ion battery anode[J]. Journal of Materials Chemistry,2016,4(22):8734-8741.
    [33] GRUGEON S, LARUELLE S, DUPONT L, et al. An update on the reactivity of nanoparticles Co-based compounds towards Li[J]. Solid State Sciences,2003,5(6):895-904.
    [34] LI L, SENG K H, CHEN Z, et al. Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries[J]. Nanoscale,2013,5(5):1922-1928.
    [35] PENG L, ZHANG H, BAI Y, et al. Unique synthesis of mesoporous peapod-like NiCo2O4-C nanorods array as an enhanced anode for lithium ion batteries[J]. Journal of Materials Chemistry,2015,3(44):22094-22101.
    [36] XIONG P, LIU B, TERAN V, et al. Chemically integrated two-dimensional hybrid zinc manganate/graphene nanosheets with enhanced lithium storage capability[J].
    [37] WANG P, SHEN M, ZHOU H, et al. MOF-derived CuS@Cu-BTC composites as high-performance anodes for lithium-ion batteries[J]. Small,2019,15(47):1903522.
    [38] ZHUKOVSKII Y F, KOTOMIN E A, BALAYA P, et al. Enhanced interfacial lithium storage in nanocomposites of transition metals with lif and Li2O: Comparison of calculations and experimental studies[J]. Solid State Sciences,2008,10(4):491-495.
    [39] SCHICHTEL N, KORTE C, HESSE D, et al. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films: Theoretical considerations and experimental studies[J]. Physical Chemistry Chemical Physics,2009,11(17):3043-3048.
    [40] GAO D, WANG Y, LIU Y, et al. Interfacial engineering of SnS2 heterostructure onto nitrogen-doped graphene for boosted lithium storage capability[J]. Journal of Colloid and Interface Science,2019,538:116-124.
    [41] WEI Z, WANG L, ZHUO M, et al. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries[J]. Journal of Materials Chemistry A,2018,6(26):12185-12214.
    [42] LUO B, HU Y, ZHU X, et al. Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability[J]. Journal of Materials Chemistry A,2018,6(4):1462-1472.
  • 加载中
图(7)
计量
  • 文章访问数:  1796
  • HTML全文浏览量:  608
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 录用日期:  2020-09-07
  • 网络出版日期:  2020-09-21
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回