留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续玻璃纤维/聚丙烯热塑性复合材料拉挤成型中的工艺参数

荆蓉 张锐涛 孟雨辰 王彦辉 张兴刚 赵玉 张用兵

荆蓉, 张锐涛, 孟雨辰, 等. 连续玻璃纤维/聚丙烯热塑性复合材料拉挤成型中的工艺参数[J]. 复合材料学报, 2020, 37(11): 2782-2788. doi: 10.13801/j.cnki.fhclxb.20200302.003
引用本文: 荆蓉, 张锐涛, 孟雨辰, 等. 连续玻璃纤维/聚丙烯热塑性复合材料拉挤成型中的工艺参数[J]. 复合材料学报, 2020, 37(11): 2782-2788. doi: 10.13801/j.cnki.fhclxb.20200302.003
JING Rong, ZHANG Ruitao, MENG Yuchen, et al. Parameters in process of pultrusion of continuous glass fiber/polypropylene thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2782-2788. doi: 10.13801/j.cnki.fhclxb.20200302.003
Citation: JING Rong, ZHANG Ruitao, MENG Yuchen, et al. Parameters in process of pultrusion of continuous glass fiber/polypropylene thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2782-2788. doi: 10.13801/j.cnki.fhclxb.20200302.003

连续玻璃纤维/聚丙烯热塑性复合材料拉挤成型中的工艺参数

doi: 10.13801/j.cnki.fhclxb.20200302.003
详细信息
    通讯作者:

    张兴刚,博士,高级工程师,研究方向为树脂基复合材料 E-mail:13525987482@163.com

  • 中图分类号: TB332

Parameters in process of pultrusion of continuous glass fiber/polypropylene thermoplastic composites

  • 摘要: 采用复合纱拉挤方法制备连续玻璃纤维/聚丙烯(GF/PP)热塑性复合材料,研究了复合纱拉挤成型过程中模具温度及拉挤速度对GF/PP复合材料截面中心温度的影响。以傅里叶定律为理论基础,分析了拉挤过程中模腔内的瞬态传热过程;建立了工艺参数矩阵,通过有限元数值计算,预测了不同模具温度、拉挤速度下GF/PP复合材料截面中心的温度变化,优选了工艺参数组合。通过实验制备不同温度、不同拉挤速度的GF/PP复合材料,并进行弯曲模量测试及截面形貌观察。结果表明:在GF/PP复合纱拉挤过程中,拉挤速度不宜超过350 mm/min,模具熔融区温度设定应高于180℃;GF/PP复合材料在150℃-230℃-50℃成型温度、100 mm/min拉挤速度的工艺参数设定下获得最优的制品力学性能;在设定拉挤参数时,拉挤速度相较于熔融区温度更重要。

     

  • 图  1  玻璃纤维/聚丙烯(GF/PP)复合纱拉挤成型模具示意图

    Figure  1.  Sketch of glass fiber/polypropylene (GF/PP) commingled yarns pultrusion mold

    图  2  热塑性拉挤复合材料

    Figure  2.  Pultruded thermoplastic composites

    图  3  不同温度下PP树脂的黏度

    Figure  3.  Viscosity of PP under different temperatures

    图  4  优选工艺参数下GF/PP复合材料中心温度的变化

    Figure  4.  Centraline temperature variation of GF/PP composites under different pulling speeds and temperatures

    150—Temperature of pre-heating zone is 150℃; 200–240—Temperature of heating zone is 200–240℃; 50—Temperature of cooling zone is 50℃

    图  5  不同温度和拉挤速度下制备的GF/PP复合材料的弯曲模量

    Figure  5.  Flexural modulus of GF/PP composites prepared under different mold temperatures and pulling speeds

    图  6  不同拉挤工艺参数的GF/PP复合复合材料截面的SEM图像

    Figure  6.  SEM images of cross-section of GF/PP composites prepared at different mold temperatures and pulling speeds

    表  1  复合纱/空气混合体属性

    Table  1.   Properties of lumped commingled yarns and air

    MaterialDensity ρ/(kg·m−3)Conductivity k/(W(m·K)−1)Specific heat Cp/(J(kg·K)−1)
    GF/PP
    commingled yarns
    1 870 0.900 1 240
    Air 675 0.042 1 034
    Lumped 926 0.222 1 077
    下载: 导出CSV

    表  2  GF/PP复合纱性能

    Table  2.   Properities of GF/PP commingled yarns

    Mass fraction/wt%Tm/℃Ts/℃
    60 165 240
    Notes: Tm—Melting temperature of PP resin; Ts—Decomposition temperature of additives in PP yarns.
    下载: 导出CSV

    表  3  拉挤模具各区域长度

    Table  3.   Sectional zone length of pultrusion mold

    ZonePre-heatingHeatingCooling
    Length/mm0–300300–700700–950
    下载: 导出CSV

    表  4  实验设计及结果

    Table  4.   Experiments array and results

    ExperimentFactorTmax/℃tmelt/s
    T/℃v/(mm·min−1)
    1 180 100 172.59 83.69
    2 180 250 155.53 0
    3 180 350 143.01 0
    4 180 500 125.87 0
    5 180 1 000 91.14 0
    6 200 100 188.47 160.66
    7 200 250 167.37 18.00
    8 200 350 152.98 0
    9 200 500 133.90 0
    10 200 1 000 96.08 0
    11 220 100 204.24 197.40
    12 220 250 179.37 48.65
    13 220 350 163.19 0
    14 220 500 141.91 0
    15 220 1 000 101.03 0
    16 240 100 220.71 210.09
    17 240 250 191.34 60.22
    18 240 350 173.37 25.80
    19 240 500 149.99 0
    20 240 1 000 106.00 0
    Notes: T—Heating zone temperature setting; v—Pulling speed setting; Tmax—Maximum centraline temperature; tmelt—Melting time.
    下载: 导出CSV

    表  5  GF/PP复合材料中心最高温度和树脂熔融时间影响因子方差

    Table  5.   Analysis of variance for centraline temperature and melting time of GF/PP composites

    FactorSum of squares-Tmax/℃2Factor effect on Tmax/%Sum of squares-tmelt/s2Factor effect on tmelt/%
    T/℃ 521.74 8.54 1 013.44 4.93
    v/(mm·min−1) 5 589.17 91.46 19 513.10 95.06
    Notes: T—Heating zone temperature setting; v—Pulling speed setting; Tmax—Maximum centraline temperature; tmelt—Melting time.
    下载: 导出CSV
  • [1] 张宝艳, 边俊形, 陈祥宝, 等. 用共编纱制备热塑性复合材料[J]. 复合材料学报, 2003, 20(3):17-21. doi: 10.3321/j.issn:1000-3851.2003.03.004

    ZHANG Baoyan, BIAN Junxing, CHEN Xiangbao, et al. Thermoplastic composites fabricated from co-braided[J]. Acta Materiae Compositae Sinica,2003,20(3):17-21(in Chinese). doi: 10.3321/j.issn:1000-3851.2003.03.004
    [2] 陈吉平, 李岩, 刘卫平, 等. 连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状[J]. 复合材料学报, 2019, 36(4):784-794.

    CHEN Jiping, LI Yan, LIU Weiping, et al. Development of AFP in-situ consolidation technology on continuous fiber reinforced thermoplastic matrix composites in aviation[J]. Acta Materiae Compositae Sinica,2019,36(4):784-794(in Chinese).
    [3] 李静雯, 张博明, 孙义亮, 等. 不同铺层方式下连续玻璃纤维/聚丙烯复合材料波纹夹芯板的力学性能[J]. 复合材料学报, 2019, 36(5):1074-1082.

    LI Jingwen, ZHANG Boming, SUN Yiliang, et al. Mechanical properties of continuous glass fiber/polypropylene corrugated sandwich boards under different laminates[J]. Acta Materiae Compositae Sinica,2019,36(5):1074-1082(in Chinese).
    [4] SURATNO B R, YE L, MAI Y W. Simulation of temperature and curing profiles in pultruded composite rods[J]. Composites Science and Technology,1998,58(2):191-197. doi: 10.1016/S0266-3538(97)00132-2
    [5] KLINKMÜLLER V, UM M K, STEFFENS M, et al. A new model for impregnation mechanisms in different GF/PP commingled yarns[J]. Applied Composite Materials,1994,1(5):351-371.
    [6] KIM D H, LEE W I, FRIEDRICH K. A model for a thermoplastic pultrusion process using commingled yarns[J]. Composites Science and Technology,2001,61(8):1065-1077. doi: 10.1016/S0266-3538(00)00234-7
    [7] CARLSSON A, ÅSTRÖM B T. Modeling of heat transfer and crystallization kinetics in thermoplastic composites manufacturing: Pultrusion[J]. Polymer Composites,1998,19(4):352-359. doi: 10.1002/pc.10108
    [8] TOMIĆ N Z, VUKSANOVIĆ M, MEĐO B, et al. Optimizing the thermal gradient and the pulling speed in a thermoplastic pultrusion process of PET/E glass fibers using finite element method[J]. Metallurgical and Materials Engineering,2018,24(2):103-112. doi: 10.30544/367
    [9] DUHOVIC M, ASWALE P, SCHOMMER D, et al. Development of a process simulation model of a pultrusion line[C]//Proceedings of 12th European LS-DYNA Users Conference. Koblenz: DYNAmore GmbH, 2019.
    [10] LAROCK J A, HAHN H T, EVANS D J. Pultrusion processes for thermoplastic composites[J]. Journal of Thermoplastic Composite Materials,1989,2(3):216-229. doi: 10.1177/089270578900200304
    [11] 张纪奎, 关志东, 郦正能. 热固性复合材料固化过程中温度场的三维有限元分析[J]. 复合材料学报, 2006, 23(2):175-179. doi: 10.3321/j.issn:1000-3851.2006.02.030

    ZHANG Jikui, GUAN Zhidong, LI Zhengneng. Three-dimensional finite element analysis for the temperature field of thermoset composites during cure process[J]. Acta Materiae Compositae Sinica,2006,23(2):175-179(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.02.030
    [12] ZHOU F, KUENTZER N, SIMACEK P, et al. Analytic characterization of the permeability of dual-scale fibrous porous media[J]. Composites Science and Technology,2006,66(15):2795-2803. doi: 10.1016/j.compscitech.2006.02.025
    [13] MICHAUD V, MÅNSON J A E. Impregnation of compressible fiber mats with a thermoplastic resin Part Ⅰ: Theory[J]. Journal of Composite Materials,2001,35(13):1150-1173. doi: 10.1177/002199801772662271
    [14] SORBIE K S. Depleted layer effects in polymer flow through porous media Ⅰ: Single capillary calculations[J]. Journal of Colloid and Interface Science,1990,139(2):299-314. doi: 10.1016/0021-9797(90)90103-U
    [15] BIRD R B, ARMSTRONG R C, HASSAGER O. Dynamics of polymeric liquids Vol. 1: Fluid mechanics[M]. 2nd Edition. New York: Wiley, 1987.
    [16] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法 : GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fibre-reinforced plastic composites: Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [17] FRIEDRICH K. Commingled yarns and their use for composites[M]. Dordrecht: Kluwer Publishers, 1999.
    [18] LIU L, ZHANG B M, WANG D F, et al. Effects of cure cycles on void content and mechanical properties of composite laminates[J]. Composite Structures,2006,73(3):303-309. doi: 10.1016/j.compstruct.2005.02.001
    [19] 刘春太, 申长雨. 利用TAGUCHI方法优化纤维增强PA66注塑熔接线拉伸性能[J]. 复合材料学报, 2004, 21(5): 68-73.

    LIU Chuntai, SHEN Changyu. Using TAGUCHI methods to optimize the weld line strength in injection molded short-fiber reinforced PA66[J]. Acta Materiae Composite Sinica, 2004, 21(5): 68-73 (in Chinese).
    [20] MCCABE J F, OGDEN A R. The relationship between porosity, compressive fatigue limit and wear in composite resin restorative materials[J]. Dental Materials,1987,3(1):9-12. doi: 10.1016/S0109-5641(87)80053-2
    [21] 马雯, 刘福顺. 玻璃纤维复合材料孔隙率对超声衰减系数及力学性能的影响[J]. 复合材料学报, 2012, 29(5):69-75.

    MA Wen, LIU Fushun. Effect of porosity on the attenuation coefficient and mechanical properties of glass fiber reinforced composites[J]. Acta Materiae Compositae Sinica,2012,29(5):69-75(in Chinese).
    [22] 刘玲, 路明坤, 张博明, 等. 孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响[J]. 复合材料学报, 2004, 21(5):116-121. doi: 10.3321/j.issn:1000-3851.2004.05.022

    LIU Ling, LU Mingkun, ZHANG Boming, et al. Effects of porosity on the ultrasonic absorption coefficient and mechanical strength of carbon/epoxy composites[J]. Acta Materiae Compositae Sinica,2004,21(5):116-121(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.05.022
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  1555
  • HTML全文浏览量:  923
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 录用日期:  2020-02-08
  • 网络出版日期:  2020-03-03
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回