留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)双逾渗导热复合材料的制备和性能

欧阳泽宇 王珂珂 饶琼 张志龙 扶碧波 彭雄奇

欧阳泽宇, 王珂珂, 饶琼, 等. 石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)双逾渗导热复合材料的制备和性能[J]. 复合材料学报, 2021, 38(3): 722-731. doi: 10.13801/j.cnki.fhclxb.20200806.003
引用本文: 欧阳泽宇, 王珂珂, 饶琼, 等. 石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)双逾渗导热复合材料的制备和性能[J]. 复合材料学报, 2021, 38(3): 722-731. doi: 10.13801/j.cnki.fhclxb.20200806.003
OUYANG Zeyu, WANG Keke, RAO Qiong, et al. Preparation and properties of thermally conductive grapheme nanoplates/(polyetherketone cardo-epoxy) composites with double percolation structures[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 722-731. doi: 10.13801/j.cnki.fhclxb.20200806.003
Citation: OUYANG Zeyu, WANG Keke, RAO Qiong, et al. Preparation and properties of thermally conductive grapheme nanoplates/(polyetherketone cardo-epoxy) composites with double percolation structures[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 722-731. doi: 10.13801/j.cnki.fhclxb.20200806.003

石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)双逾渗导热复合材料的制备和性能

doi: 10.13801/j.cnki.fhclxb.20200806.003
基金项目: 国家自然科学基金(11972225)
详细信息
    通讯作者:

    彭雄奇,博士,教授,博士生导师,研究方向为复合材料及其成形、力学  E-mail:xqpeng@sjtu.edu.cn

  • 中图分类号: TB332

Preparation and properties of thermally conductive grapheme nanoplates/(polyetherketone cardo-epoxy) composites with double percolation structures

  • 摘要: 为在较低的导热填料含量下提高环氧树脂(EP)的热导率,通过溶液法制备了石墨烯纳米片/(酚酞聚芳醚酮-EP) (GNP/(PEK-C-EP))复合材料。基于接触角测量计算并预测了GNP的选择性分布,并通过SEM和激光闪光法研究了GNP和PEK-C含量对GNP/(PEK-C-EP)复合材料的微观结构和热导率的影响。结果表明,当PEK-C的含量为20wt%时,GNP选择性分布在PEK-C中,形成了双逾渗结构的GNP/(PEK-C-EP)复合材料,从而构建了连续导热通道。当GNP含量为1wt%时,GNP/EP复合材料导热率最高达0.375 W(m·K)−1。当GNP含量为0.5wt%时,GNP/(PEK-C-EP)复合材料导热率最高达0.371 W(m·K)−1,较GNP含量为0.5wt%的GNP/EP复合材料热导率高48%,与GNP含量为1wt%的GNP/EP复合材料的热导率基本相同。表明GNP/(PEK-C-EP)复合材料的填料量减少了50%,利用双逾渗效应可以有效减少导热填料用量。此外,比较了纯EP和GNP/(PEK-C-EP)复合材料的玻璃化转变温度、热稳定性和热膨胀系数,结果表明,GNP/(PEK-C-EP)复合材料的热性能优于纯EP。

     

  • 图  1  酚酞聚芳醚酮(PEK-C)和环氧树脂(EP)分别与去离子水和乙二醇的接触角图像

    Figure  1.  Images of contact angles of polyetherketone cardo (PEK-C) and epoxy (EP) with deionized water and glycol respectively

    图  2  0.5GNP/(10PEK-C-90EP)复合材料断面形貌的SEM图像

    Figure  2.  SEM images of fracture surfaces of 0.5GNP/(10PEK-C-90EP) composite

    图  3  不同GNP含量时GNP/(PEK-C-EP)复合材料断面微观形貌的SEM图像

    Figure  3.  SEM imagess of fracture surfaces of GNP/(PEK-C-EP) composites with different GNP contents

    图  4  不同GNP含量的GNP/EP和GNP/(PEK-C-EP)复合材料热导率(a)及热逾渗幂律方程对GNP/(PEK-C-EP)复合材料热导率的拟合曲线(b)

    Figure  4.  Thermal conductivities of GNP/EP and GNP/(PEK-C-EP) composites with different GNP contents (a) and fitting curve of thermal conductivity of GNP/(PEK-C-EP) composites by thermal percolation power law equation (b)

    图  5  EP和0.5GNP/(20PEK-C-80EP)复合材料的DSC曲线

    Figure  5.  DSC curves of EP and 0.5GNP/(20PEK-C-80EP) composite

    图  6  EP和0.5GNP/(20PEK-C-80EP)复合材料的TG曲线

    Figure  6.  TG curves of EP and 0.5GNP/(20PEK-C-80EP) composite

    图  7  EP、0.3GNP/(20PEK-C-80EP)和0.5GNP/(20PEK-C-80EP)复合材料热膨胀曲线

    Figure  7.  Thermal expansion curves of EP, 0.3GNP/(20PEK-C-80EP) and 0.5GNP/(20PEK-C-80EP) composites

    表  1  试剂表面张力及其色散和极性分量[12]

    Table  1.   Surface tensions, dispersive and polarcomponents of chemical reagents

    Reagent$\gamma $/(mN·m–1)${\gamma ^{\rm{d}}}$/(mN·m–1)${\gamma ^{\rm{p}}}$/(mN·m–1)
    Ethylene glycol 47.5 31.2 16.3
    Deionized water 71.5 28.2 43.3
    Notes: $\gamma $—Surface tension; ${\gamma ^{\rm{d}}}$, ${\gamma ^{\rm{p}}}$—Dispersive and polar components of surface tension, respectively.
    下载: 导出CSV

    表  2  EP、PEK-C和石墨烯纳米片(GNP)的表面张力

    Table  2.   Surface tensions of EP, PEK-C and graphene nanoplate (GNP)

    ComponentHarmonicGeometricRef.
    $\gamma $/(mN·m–1)${\gamma ^{\rm{d}}}$/(mN·m–1)${\gamma ^{\rm{p}}}$/(mN·m–1)$\gamma $/(mN·m–1)${\gamma ^{\rm{d}}}$/(mN·m–1)${\gamma ^{\rm{p}}}$/(mN·m–1)
    EP 43.07 10.35 32.72 40.49 7.71 32.78 Tested
    PEK-C 33.84 11.46 22.38 30.04 15.41 14.63 Tested
    GNP 23.20 10.80 12.40 22.76 19.49 3.27 [12]
    Notes: “Harmonic” indicates that the surface tensions can be obtained from the equation (6); “Geometric” indicates that the surface tensions can be obtained from the equation (7).
    下载: 导出CSV

    表  3  EP、PEK-C和GNP之间的界面张力

    Table  3.   Interfacial tensions of EP, PEK-C and GNP

    Component couple${\gamma _{1 - 2}}$/(mN·m−1)
    Geometric-GeometricGeometric-HarmonicHarmonic-GeometricHarmonic-Harmonic
    EP-PEK-C 4.93 1.01 9.51 1.99
    EP-GNP 18.11 4.84 29.37 9.16
    PEK-C-GNP 4.34 1.47 7.75 2.88
    Notes: “Geometric-Geometric” and other similar marks indicate “the formula for the surface tension data source (equation (6) or equation (7))-the formula for calculating the interface tension (equation (4) or equation (5))”.
    下载: 导出CSV

    表  4  GNP/(PEK-C-EP)复合材料的润湿系数${\omega _\alpha }$

    Table  4.   Wetting coefficient ωα of GNP/(PEK-C-EP) composites

    ${\omega _\alpha }$ calculated from
    Geometric-Geometric
    ${\omega _\alpha }$ calculated from
    Geometric-Harmonic
    ${\omega _\alpha }$ calculated from
    Harmonic-Geometric
    ${\omega _\alpha }$ calculated from
    Harmonic-Harmonic
    Location of GNP
    2.793.352.273.15PEK-C
    下载: 导出CSV

    表  5  EP和0.5GNP/(20PEK-C-80EP)复合材料的热失重5%的温度(T5%)、热失重10%的温度(T10% )和残炭率(Rw)

    Table  5.   Temperature of 5% mass loss (T5%), temperature of 10% mass loss (T10%) and residual carbon ratios (Rw) of EP and 0.5GNP/(20PEK-C-80EP) composite

    SampleT5%/℃T10%/℃Rw/%
    EP322.7352.624.2
    0.5GNP/
    (20PEK-C-80EP)
    320.1354.930.5
    下载: 导出CSV
  • [1] LIU S, CHEVALI V S, XU Z G, et al. A review of extending performance of epoxy resins using carbon nanomaterials[J]. Composites Part B: Engineering,2018,136:197-214. doi: 10.1016/j.compositesb.2017.08.020
    [2] GUO Y Q, RUAN K P, SHI X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology,2020,193:108134. doi: 10.1016/j.compscitech.2020.108134
    [3] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. doi: 10.1016/j.progpolymsci.2016.03.001
    [4] ZHANG R H, SHI X T, TANG L, et al. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers[J]. Chinese Journal of Polymer Science,2020,38(7):730-739. doi: 10.1007/s10118-020-2391-0
    [5] 钟洨, 孟旭东, 张睿涵, 等. 改性纳米BN/甲基乙烯基硅橡胶导热复合材料的制备[J]. 复合材料学报, 2019, 36(11):2644-2650.

    ZHONG Xiao, MENG Xudong, ZHANG Ruihan, et al. Preparation of functionalized nano BN/methyl vinyl silicone rubber thermally conductive composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2644-2650(in Chinese).
    [6] LEE E S, LEE S M, SHANEFIELD D J, et al. Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin[J]. Journal of the American Ceramic Society,2008,91(4):1169-1174. doi: 10.1111/j.1551-2916.2008.02247.x
    [7] SUMITA M, SAKATA K, ASAI S, et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black[J]. Polymer Bulletin,1991,25(2):265-271. doi: 10.1007/BF00310802
    [8] BONNET P, SIREUDE D, GARNIER B, et al. Thermal properties and percolation in carbon nanotube-polymer composites[J]. Applied Physics Letters,2007,91(20):201910.
    [9] CHEN J, CUI X, SUI K, et al. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure[J]. Composites Science and Technology,2017,140:99-105. doi: 10.1016/j.compscitech.2016.12.029
    [10] LIU W, YANG Y, NIE M. Constructing a double-percolated conductive network in a carbon nanotube/polymer-based flexible semiconducting composite[J]. Composites Science and Technology,2018,154:45-52. doi: 10.1016/j.compscitech.2017.11.003
    [11] QI X Y, YAN D, JIANG Z, et al. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content[J]. ACS Applied Materials & Interfaces,2011,3(8):3130-3133. doi: 10.1021/am200628c
    [12] HUANG J, ZHU Y, XU L, et al. Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend[J]. Composites Science and Technology,2016,129:160-165. doi: 10.1016/j.compscitech.2016.04.029
    [13] MA C G, XI D Y, LIU M. Epoxy resin/polyetherimide/carbon black conductive polymer composites with a double percolation structure by reaction-induced phase separation[J]. Journal of Composite Materials,2013,47(9):1153-1160. doi: 10.1177/0021998312446180
    [14] ZHANG Y, CHEN F, LI Z, et al. Ubiquitous nature of the three-layered structure formation in the asymmetric phase separation of the epoxy/thermoplastic blends[J]. Polymer,2012,53(2):588-594. doi: 10.1016/j.polymer.2011.11.051
    [15] ZHANG J, GUO Q, FOX B L. Study on thermoplastic-modified multifunctional epoxies: Influence of heating rate on cure behaviour and phase separation[J]. Composites Science and Technology,2009,69(7-8):1172-1179. doi: 10.1016/j.compscitech.2009.02.016
    [16] ASTM International. Standard test method for thermal diffusivity of solids by the flash method: ASTM E1461—01[S]. West Conshohocken: ASTM International, 2001.
    [17] YANG X T, LIANG C B, MA T B, et al. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication methods[J]. Advanced Composites and Hybrid Materials,2018,1(2):207-230. doi: 10.1007/s42114-018-0031-8
    [18] CUI L, ZHANG Y, ZHANG Y, et al. Electrical properties and conductive mechanisms of immiscible polypropylene/Novolac blends filled with carbon black[J]. European Polymer Journal,2007,43(12):5097-5106. doi: 10.1016/j.eurpolymj.2007.08.023
    [19] WU S. Polymer interface and adhesion[M]. New York: CRC Press, 1982.
    [20] ZHANG J, NIU H, ZHOU J, et al. Synergistic effects of PEK-C/VGCNF composite nanofibres on a trifunctional epoxy resin[J]. Composites Science and Technology,2011,71(8):1060-1067. doi: 10.1016/j.compscitech.2011.03.008
    [21] ZHENG N, SUN W, LIU H Y, et al. Effects of carboxylated carbon nanotubes on the phase separation behaviour and fracture-mechanical properties of an epoxy/polysulfone blend[J]. Composites Science and Technology,2018,159(3):180-188.
    [22] KWON S Y, KWON I M, KIM Y G, et al. A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena[J]. Carbon,2013,55(2):285-290.
    [23] 石刚, 张鉴炜, 雷博文, 等. 石墨烯微片尺寸对石墨烯纸热导率的影响[J]. 国防科技大学学报, 2016, 38(3):112-116. doi: 10.11887/j.cn.201603019

    SHI Gang, ZHANG Jianwei, LEI Bowen, et al. Effects of graphene sheets size on thermal conductivity of graphene paper[J]. Journal of National University of Defense Technology,2016,38(3):112-116(in Chinese). doi: 10.11887/j.cn.201603019
    [24] LIU W, XU K, WANG C, et al. Carbon nanofibers reinforced soy polyol-based polyurethane nanocomposites[J]. Journal of Thermal Analysis and Calorimetry,2016,123(3):2459-2468. doi: 10.1007/s10973-015-4690-1
    [25] SUN Y, ZHANG Y, XU K, et al. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes[J]. Journal of Applied Polymer Science,2015,132(12):41694.
    [26] 张昊明, 赵永涛, 张红松, 等. 热压烧结镀Cr碳纤维/Cu复合材料的制备及热性能[J]. 复合材料学报, 2018, 35(9):2481-2487.

    ZHANG Haoming, ZHAO Yongtao, ZHANG Hongsong, et al. Fabrication and thermal properties of hot press sintered Cr-coated carbon fiber/Cu composites[J]. Acta Materiae Compositae Sinica,2018,35(9):2481-2487(in Chinese).
    [27] 王菲菲, 王志鹏, 王红华, 等. 主链含N-烷基咔唑环结构聚芳醚酮的性能表征[J]. 应用化学, 2015, 32(4):379-385.

    WANG Feifei, WANG Zhipeng, WANG Honghua, et al. Properties of poly(arylene ether ketone)s containing N-alkylcarbazole in main chains[J]. Chinese Journal of Applied Chemistry,2015,32(4):379-385(in Chinese).
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  1718
  • HTML全文浏览量:  607
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25
  • 录用日期:  2020-07-14
  • 网络出版日期:  2020-08-06
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回