留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳结构超疏水表面的浸润性及防冰性能

武壮壮 马国佳 崔向中 刘星

武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(11): 2769-2775. doi: 10.13801/j.cnki.fhclxb.20200312.001
引用本文: 武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(11): 2769-2775. doi: 10.13801/j.cnki.fhclxb.20200312.001
WU Zhuangzhuang, MA Guojia, CUI Xiangzhong, et al. Wettability and anti-icing performance of micro-nano structure superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2769-2775. doi: 10.13801/j.cnki.fhclxb.20200312.001
Citation: WU Zhuangzhuang, MA Guojia, CUI Xiangzhong, et al. Wettability and anti-icing performance of micro-nano structure superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2769-2775. doi: 10.13801/j.cnki.fhclxb.20200312.001

微纳结构超疏水表面的浸润性及防冰性能

doi: 10.13801/j.cnki.fhclxb.20200312.001
详细信息
    通讯作者:

    马国佳,博士,研究员,研究方向为微纳加工及仿生表面制备及工艺 E-mail:lemontree7678@163.com

  • 中图分类号: TB332

Wettability and anti-icing performance of micro-nano structure superhydrophobic surface

  • 摘要: 以Ti合金为基体材料,通过超快激光加工微结构并复合纳米SiO2/氟化聚氨酯涂料,获得微纳结构的涂层表面,并与涂料喷涂获得的纳米涂层表面和未处理的Ti合金表面进行对比分析。分别采用扫描电镜、超景深显微镜、接触角和冰结合力测量仪,研究分析未处理Ti合金表面、纳米结构表面、微纳结构表面的形貌、疏水性、防覆冰性能。结果表明:具有微纳结构的涂层表面具有最佳的超疏水性,接触角为158.9°;与未处理Ti合金表面、纳米结构表面相比,微纳结构表面冰结合力显著降低,表面冰结合强度约为410 kPa。

     

  • 图  1  未处理表面、纳米结构表面、微纳结构表面润湿关系

    Figure  1.  Wetting relationships of untreated surface, nano structure surface and micro-nano structure surface

    图  2  方阵柱微结构示意图

    Figure  2.  Diagram of squarematrix column microstructure

    L—Side length; P—Spacing; H—Height

    图  3  冰结合力测试装置及测试试验照片

    Figure  3.  Photographs of ice adhesion test device and test

    图  4  Ti合金基体上的未处理表面、纳米结构表面、微纳结构表面的微观形貌:(a)微纳结构表面; (b)纳米结构(SiO2); (c)微纳结构表面的三维形貌;(d)纳米结构涂层表面形貌;(e)纳米结构(SiO2);(f)未处理的Ti合金表面

    Figure  4.  Surface morphologies micro-nano structure surface, nano structure surface and untreated surface on Ti alloy substrate:(a) Micro-nano structure formed by square matrix column; (b) Nano structure (SiO2); (c) Three-dimensional topography of micro-nano structure surface; (d) Surface morphology of nano structured coating; (e) Nano structure (SiO2); (f) Untreated Ti alloy surface

    图  5  Ti合金基体上的微纳结构表面、纳米结构表面、未处理表面的接触角

    Figure  5.  Surface contact angles of micro-nano structure surface, nano structure surface and untreated surface on Ti alloy substrate

    MN- —Micro-nano structure surface; N- —Nano structure surface; UT- —Untreated surface

    图  6  –10℃下Ti合金基体上微纳结构表面、纳米结构表面、未处理表面冰结合强度

    Figure  6.  Surface ice adhesion strength of micro-nano structure surface, nano structure surface and untreated surface on Ti alloy substrate at –10℃

    图  7  −10℃下测量20次的Ti合金基体上微纳结构表面、纳米结构表面、未处理表面冰结合强度变化趋势

    Figure  7.  Trend of ice adhesion strength of micro-nano structure surface, nano structure surface and untreated surface on Ti alloy substrate measured 20 times at −10℃

  • [1] 陈凯, 王强, 夏祖西. 飞机超疏水表面的防冰性能研究进展[J]. 应用化工, 2016, 45(10):1969-1973.

    CHEN Kai, WANG Qiang, XIA Zuxi. Progress research on anti-icing property of aircraft superhydrophobic surface[J]. Applied Chemical Industry,2016,45(10):1969-1973(in Chinese).
    [2] 王冠, 张德远, 陈华伟. 飞机防冰: 从传统到仿生的发展[J]. 工业技术创新, 2014, 1(2):241-250.

    WANG Guan, ZHANG Deyuan, CHEN Huawei. The development of aircraft anti-icing: From traditional to bionic[J]. Industrial Technology Innovation,2014,1(2):241-250(in Chinese).
    [3] 马蕾, 王贤明, 宁亮. 飞机防冰涂料的研究进展[J]. 中国涂料, 2014, 29(1):11-14, 18. doi: 10.3969/j.issn.1006-2556.2014.01.004

    MA Lei, WANG Xianming, NING Liang. Research progress of aircraft anti-icing coatings[J]. China Coatings,2014,29(1):11-14, 18(in Chinese). doi: 10.3969/j.issn.1006-2556.2014.01.004
    [4] 杨钦, 罗荘 竹, 谭生, 等. 超疏水自清洁涂层防结冰技术的研究进展[J]. 中国表面工程, 2016, 29(4):10-22. doi: 10.11933/j.issn.1007-9289.2016.04.002

    YANG Qin, LUO Yizhu, TAN Sheng, et al. Research progress in anti-icing technology of superhydrophobic self-cleaning coating[J]. China Surface Engineering,2016,29(4):10-22(in Chinese). doi: 10.11933/j.issn.1007-9289.2016.04.002
    [5] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plantsurfaces[J]. Annals of Botany,1997,79(6):667-677. doi: 10.1006/anbo.1997.0400
    [6] BHUSHAN B, JUNG Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction[J]. Progress in Materials Science,2011,56(1):1-108. doi: 10.1016/j.pmatsci.2010.04.003
    [7] ZHANG Q, JIN B, WANG B, et al. Fabrication of a highly stable superhydrophobic surface with dual-scale structure and its antifrosting properties[J]. Industrial & Engineering Chemistry Research,2017,56(10):2754-2763.
    [8] 翟广坤, 李曙林, 陈素素, 等. 氟化改性硅树脂制备的超疏水涂层防覆冰性能[J]. 工程科学学报, 2018, 40(7):864-870.

    ZHAI Guangkun, LI Shulin, CHEN Susu, et al. Anti-icing performance of superhydrophobic coating prepared by modified fluorinated silicone[J]. Chinese Journal of Engineering,2018,40(7):864-870(in Chinese).
    [9] LATTHE S S, SUTAR R S, KODAG V S, et al. Selfcleaning superhydrophobic coatings: Potential industrial applications[J]. Progress in Organic Coatings,2019,128:52-58. doi: 10.1016/j.porgcoat.2018.12.008
    [10] 刘建峰, 肖新颜. 溶胶-凝胶法超疏水含氟硅聚氨酯丙烯酸酯/SiO2杂化涂层的制备[J]. 高分子材料科学与工程, 2014, 30(6):130-135.

    LIU Jianfeng, XIAO Xinyan. Preparation of superhydrophobic FSiPUA/SiO2 hybrid coatings via sol-gel method[J]. Polymer Materials Science & Engineering,2014,30(6):130-135(in Chinese).
    [11] WANG S, FENG L, JIANG L. One-step solutionimmersion process for the fabrication of stable bionic superhydrophobic surfaces[J]. Advanced Materials,2006,18(6):767-770. doi: 10.1002/adma.200501794
    [12] FENG L, LI S H, LI H J, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie International Edition,2002,41(7):1221-1223.
    [13] MA M, HILL R M. Superhydrophobic surfaces[J]. Current Opinion in Colloid & Interface Science,2006,11(4):193-202.
    [14] EBERT D, BHUSHAN B. Durable lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles[J]. Journal of Colloid and Interface Science,2012,368(1):584-591. doi: 10.1016/j.jcis.2011.09.049
    [15] BAKE A, MERAH N, MATIN A, et al. Preparation of transparent and robust superhydrophobic surfaces for self-cleaning applications[J]. Progress in Organic Coatings,2018,122:170-179. doi: 10.1016/j.porgcoat.2018.05.018
    [16] 马国佳, 刘星, 张伟, 等. 超疏水仿生表面制造及其应用[J]. 稀有金属材料与工程, 2018, 47(6):1866-1871.

    MA Guojia, LIU Xing, ZHANG Wei, et al. Fabrication and application of super-hydrophobic bionic surface[J]. Rare Metal Materials and Engineering,2018,47(6):1866-1871(in Chinese).
    [17] DARMANIN T, GIVENCHY E T D, AMIGONI S, et al. Superhydrophobic surfaces by electrochemical processes[J]. Advanced Materials,2013,25(10):1378-1394. doi: 10.1002/adma.201204300
    [18] 郗金明. 超疏水、超双疏材料的制备与研究[D]. 北京: 中国科学院化学研究所, 2008.

    XI Jinming. Fabrication and study of superhydrophobic and superamphiphobic materials[D]. Beijing: Institute of Chemistry, Chinese Academy of Sciences, 2008(in Chinese).
    [19] 黄建业. 仿生超疏水表面的制备、疏水稳定性与应用研究[D]. 西安: 西北工业大学, 2014.

    HUANG Jianye. Preparation, hydrophobic stability and application research of biomimetic superhydrophobic surfaces[D]. Xi’an: Northwestern Polytechnical University, 2014(in Chinese).
    [20] 王强峰. 超浸润表面的制备及其防覆冰性能与机理的研究[D]. 杭州: 浙江大学, 2018.

    WANG Qiangfeng. Fabrication of superwetting surfaces and research on properties and mechanisms for anti-icing application[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
    [21] FARHADI S, FARZANEH M, KULINICH S A. Anti-icing performance of superhydrophobic surfaces[J]. Applied Surface Science,2011,257(14):6264-6269.
    [22] KULINICH S A, FARZANEH M. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces[J]. Langmuir,2009,25(16):8854-8856. doi: 10.1021/la901439c
    [23] HAO P F, LV C J, ZHANG X W. Freezing of sessile water droplets on surfaces with various roughness and wettability[J]. Applied Physics Letters,2014,104(16):161609.
    [24] 杨钦. 工程实用性超疏水自清洁涂层防结冰行为及机理研究[D]. 重庆: 中国科学院大学, 2017.

    YANG Qin. Anti-icing behaviors and mechanism of engineering superhydrophobic self-cleaning coatings[D]. Chongqing: University of Chinese Academy of Sciences, 2017(in Chinese).
    [25] SCHUTZIUS T M, JUNG S, MAITRA T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces[J]. Nature,2015,527(7576):82-85. doi: 10.1038/nature15738
  • 加载中
图(7)
计量
  • 文章访问数:  1741
  • HTML全文浏览量:  737
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 录用日期:  2020-02-28
  • 网络出版日期:  2020-03-12
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回