留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丙烯酸钠-玉米芯接枝共聚物的制备及其对Ni2+的吸附机制

陈尚龙 唐仕荣

陈尚龙, 唐仕荣. 丙烯酸钠-玉米芯接枝共聚物的制备及其对Ni2+的吸附机制[J]. 复合材料学报, 2021, 38(6): 1939-1949. doi: 10.13801/j.cnki.fhclxb.20200922.004
引用本文: 陈尚龙, 唐仕荣. 丙烯酸钠-玉米芯接枝共聚物的制备及其对Ni2+的吸附机制[J]. 复合材料学报, 2021, 38(6): 1939-1949. doi: 10.13801/j.cnki.fhclxb.20200922.004
CHEN Shanglong, TANG Shirong. Preparation of sodium acrylate-corncobs graft copolymers and its adsorption mechanism for Ni2+[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1939-1949. doi: 10.13801/j.cnki.fhclxb.20200922.004
Citation: CHEN Shanglong, TANG Shirong. Preparation of sodium acrylate-corncobs graft copolymers and its adsorption mechanism for Ni2+[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1939-1949. doi: 10.13801/j.cnki.fhclxb.20200922.004

丙烯酸钠-玉米芯接枝共聚物的制备及其对Ni2+的吸附机制

doi: 10.13801/j.cnki.fhclxb.20200922.004
基金项目: 国家自然科学基金 (31701566)
详细信息
    通讯作者:

    陈尚龙,博士,高级实验师,研究方向为固体废弃物资源化利用 E-mail:slchen1982@163.com

  • 中图分类号: TB324;X52;X712;X703

Preparation of sodium acrylate-corncobs graft copolymers and its adsorption mechanism for Ni2+

  • 摘要: 为探索利用农业废弃物玉米芯制备高效吸附材料去除水溶液中重金属离子的可行性。利用原子转移自由基聚合(ATRP)技术将大量对重金属离子具有较强亲和能力的羧基嫁接到玉米芯表面,制备出丙烯酸钠-玉米芯接枝共聚物(MC-g-PGMA-g-PAA-Na),同时采用热重、FTIR、SEM、EDS和XPS对吸附Ni2+前后的吸附材料进行表征,研究其吸附机制。结果表明MC-g-PGMA-g-PAA-Na可以有效地去除水溶液中的Ni2+,其羧基含量达到6.02 mmol·g−1,是改性前的35.4倍。MC-g-PGMA-g-PAA-Na与含有Ni2+溶液接触后,主要是其含有的羧基吸附了溶液中Ni2+,并形成了羧酸镍,吸附前后Ni2+的价态没有发生变化,羧基与Ni2+的配位方式主要是双齿桥式。同时MC-g-PGMA-g-PAA-Na含有的Na+全部释放到溶液中,说明该吸附过程伴有Na+与Ni2+的阳离子交换。

     

  • 图  1  丙烯酸钠-甲基丙烯酸缩水甘油酯-玉米芯接枝共聚物(MC-g-PGMA-g-PAA-Na)合成示意图

    Figure  1.  Schematic representation for the synthesis of poly(sodium methyl acrylate)-poly(glycidyl methacrylate) grafted corncobs (MC-g-PGMA-g-PAA-Na)

    图  2  NaOH浓度对丙烯酸甲酯-甲基丙烯酸缩水甘油酯-玉米芯接枝共聚物(MC-g-PGMA-g-PMA)水解的影响

    Figure  2.  Effect of NaOH concentration on hydrolysis of the poly(methyl acrylate)-poly (glycidyl methacrylate) grafted corncobs (MC-g-PGMA-g-PMA)

    图  3  水解时间对MC-g-PGMA-g-PMA水解的影响

    Figure  3.  Effect of hydrolysis time on hydrolysis of MC-g-PGMA-g-PMA

    图  4  水解温度对MC-g-PGMA-g-PMA水解的影响

    Figure  4.  Effect of hydrolysis temperature on hydrolysis of MC-g-PGMA-g-PMA

    图  5  固液比对MC-g-PGMA-g-PAA-Na吸附Ni2+的影响

    Figure  5.  Effect of solid/liquid ratio on adsorption of Ni2+ on MC-g-PGMA-g-PAA-Na

    图  6  溶液pH值对MC-g-PGMA-g-PAA-Na吸附Ni2+的影响

    Figure  6.  Effect of solution pH values on adsorption of Ni2+ on MC-g-PGMA-g-PAA-Na

    图  7  吸附Ni2+前后吸附材料的TG曲线

    Figure  7.  TG curves of MC-g-PGMA-g-PAA-Na and MC-g-PGMA-g-PAA-Ni

    图  8  吸附Ni2+前后吸附材料的FTIR图谱

    Figure  8.  FTIR spectra of MC-g-PGMA-g-PAA-Na and MC-g-PGMA-g-PAA-Ni

    图  9  羧酸盐的配位方式

    Figure  9.  Coordination of the carboxylate-metal complex

    图  10  MC-g-PGMA-g-PAA-Ni中羧基与Ni2+的配位方式

    Figure  10.  Coordination of the carboxylate-metal complex in MC-g-PGMA-g-PAA-Ni

    图  11  MC-g-PGMA-g-PAA-Na的SEM图像

    Figure  11.  SEM image of MC-g-PGMA-g-PAA-Na

    图  12  MC-g-PGMA-g-PAA-Ni的SEM图像

    Figure  12.  SEM image of MC-g-PGMA-g-PAA-Ni

    图  13  吸附Ni2+前后吸附材料的EDS图谱

    Figure  13.  EDS spectra of MC-g-PGMA-g-PAA-Na and MC-g-PGMA-g-PAA-Ni

    图  14  吸附Ni2+前后吸附材料的XPS图谱

    Figure  14.  XPS spectra of MC-g-PGMA-g-PAA-Na and MC-g-PGMA-g-PAA-Ni

    图  15  MC-g-PGMA-g-PAA-Ni中Ni2p的XPS高分辨图谱

    Figure  15.  XPS high resolution spectrum of Ni2p on MC-g-PGMA-g-PAA-Ni

    图  16  吸附Ni2+前后吸附材料中O1s的XPS高分辨图谱

    Figure  16.  XPS high resolution spectra of O1s on MC-g-PGMA-g-PAA-Na and MC-g-PGMA-g-PAA-Ni

    表  1  预处理过的玉米芯(TC)和MC-g-PGMA-g-PAA-Na中羧基含量的测定

    Table  1.   Determination of carboxyl groups in the treated corncobs (TC) and MC-g-PGMA-g-PAA-Na

    SampleCarboxyl content/
    (mmol·g−1)
    RSD/%
    TC 0.17 11.2
    MC-g-PGMA-g-PAA-Na 6.02 5.35
    Note: RSD—Relative standard deviation.
    下载: 导出CSV

    表  2  吸附Ni2+前后吸附材料中—COO对称伸缩频率和—COO反对称伸缩频率

    Table  2.   Symmetric and asymmetric vibrational frequencies of —COO in MC-g-PGMA-g-PAA-Na and MC-g-PGMA-g-PAA-Ni

    Material${\vartheta }_{\mathrm{a}\mathrm{s}\mathrm{y}\mathrm{m} }$/cm−1$ {\vartheta }_{\mathrm{s}\mathrm{y}\mathrm{m}} $/cm−1$ \Delta \vartheta $/cm−1
    MC-g-PGMA-g-PAA-Na 1 560 1 404 156
    MC-g-PGMA-g-PAA-Ni 1 557 1 411 146
    Notes: ${\vartheta }_{\mathrm{a}\mathrm{s}\mathrm{y}\mathrm{m} } $—Asymmetric stretching vibration; ${\vartheta }_{\mathrm{s}\mathrm{y}\mathrm{m} }$—Symmetric stretching vibration; ∆$\vartheta $—Separation of the bands.
    下载: 导出CSV
  • [1] ZIDELMAL N, AUBRY-BARROCA N, LEPOITTEVIN B, et al. Synthesis, characterization and catalytic properties of salen-containing polymers obtained by atom transfer radical polymerization[J]. Polymer,2018,135:261-270.
    [2] KUMAR S, KARFA P, MADHURI R, et al. Designing of fluorescent and magnetic imprinted polymer for rapid, selective and sensitive detection of imidacloprid via activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique[J]. Journal of Physics and Chemistry of Solids,2018,116:222-233.
    [3] ZHANG M, LI Y, YANG Q, et al. Temperature and pH responsive cellulose filament/poly (NIPAM-co-AAc) hybrids as novel adsorbent towards Pb(II) removal[J]. Carbohydrate Polymers,2018,195:495-504.
    [4] YUAN S, ZHANG P, YANG Z, et al. Successive grafting of poly(hydroxyethyl methacrylate) brushes and melamine onto chitosan microspheres for effective Cu(II) uptake[J]. International Journal of Biological Macromolecules,2018,109:287-302.
    [5] PLICHTA A, JASKULSKI T, LISOWSKA P, et al. Elastic polyesters improved by ATRP as reactive epoxy-modifiers of PLA[J]. Polymer,2015,72:307-316.
    [6] CHI F, ZHANG S, WEN J, et al. Functional polymer brushes for highly efficient extraction of uranium from seawater[J]. Journal of Materials Science,2019,54(4):3572-3585.
    [7] WANG Y, ZHANG Y, HOU C, et al. Preparation of a novel TETA functionalized magnetic PGMA nano-absorbent by ATRP method and used for highly effective adsorption of Hg(II)[J]. Journal of the Taiwan Institute of Chemical Engineers,2016,58:283-289.
    [8] WANG W, JULAITI P, YE G, et al. Controlled architecture of macrocyclic ligand functionalized polymer brushes from glass fibers using surface-initiated ICAR ATRP technique for adsorptive separation of lithium isotopes[J]. Chemical Engineering Journal,2018,336:669-678.
    [9] MIRZAEINEJAD M, MANSOORI Y, KOOHI-ZARGAR B. New acrylamide-based monomer containing metal chelating units: Homopolymer grafted magnetite nanoparticles via ATRP for the magnetic removal of Co(II) ions[J]. Polymers for Advanced Technologies,2018,29(4):1206-1218.
    [10] WANG J, WEI J. Functionalization of loofah fibers via surface-initiated AGET ATRP for synergic adsorption of multiple pollutants from water[J]. Materials Letters,2018,210:214-217.
    [11] PAL A, PAL S. Amphiphilic copolymer derived from tamarind gum and poly(methyl methacrylate) via ATRP towards selective removal of toxic dyes[J]. Carbohydrate Polymers,2017,160:1-8.
    [12] GUO W, SUN N, DU Y, et al. Preparation of polyamine grafted bentonite by surface-initiated atom transfer radical polymerization for efficient adsorption of orange I from aqueous solution[J]. New Journal of Chemistry,2017,41(9):3352-3357.
    [13] HUANG Q, LIU M, WAN Q, et al. Preparation of polymeric silica composites through polydopamine-mediated surface initiated ATRP for highly efficient removal of environmental pollutants[J]. Materials Chemistry and Physics,2017,193:501-511.
    [14] ZHANG Y, TAN X, LIU X, et al. Fabrication of multilayered molecularly imprinted membrane for selective recognition and separation of artemisinin[J]. ACS Sustainable Chemistry & Engineering,2019,7(3):3127-3137.
    [15] LI Y, LI Q, ZHANG C. Intelligent self-healing superhydrophobic modification of cotton fabrics via surface-initiated ARGET ATRP of styrene[J]. Chemical Engineering Journal,2017,323:134-142.
    [16] JIA J, LIU C, WANG L, et al. Double functional polymer brush-grafted cotton fiber for the fast visual detection and efficient adsorption of cadmium ions[J]. Chemical En-gineering Journal,2018,347:631-639.
    [17] NIU L, DENG S, YU G. Efficient removal of Cu(II), Pb(II), Cr(VI) and As(V) from aqueous solution using an aminated resin prepared by surface-initiated atom transfer radical polymerization[J]. Chemical Engineering Journal,2010,165:751-757.
    [18] KUANG S, WANG Z, LIU J. Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions[J]. Journal of Hazardous Materials,2013,260:210-219.
    [19] MAATAR W, BOUFI S. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent[J]. Carbohydrate Polymers,2015,126:199-207.
    [20] CHEN S, ZHAO W. Adsorption of Pb2+ from aqueous solutions using novel functionalized corncobs via atom transfer radical polymerization[J]. Polymers,2019,11(10):1715-1734.
    [21] LIU Y, GAO Q, PU S, et al. Carboxyl-functionalized lotus seedpod: A highly efficient and reusable agricultural waste-based adsorbent for removal of toxic Pb2+ ions from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,568:391-401.
    [22] NASHTIFAN S G, AZADMEHR A, MAGHSOUDI A. Comparative and competitive adsorptive removal of Ni2+ and Cu2+ from aqueous solution using iron oxide-vermiculite composite[J]. Applied Clay Science,2017,140:38-49.
    [23] 乔丹, 张永德, 罗学刚, 等. 亚铁氰化镍钾/羧甲基魔芋凝胶微球对Cs+的吸附性能及吸附机制[J]. 复合材料学报, 2018, 35(7):1939-1951.

    QIAO D, ZHANG Y D, LUO X G, et al. Adsorption properties and mechanisms of potassium nickel hexacyanoterrate/carboxymethyl konjac gel microspheres for Cs+[J]. Acta Materiae Compositae Sinica,2018,35(7):1939-1951(in Chinese).
    [24] ALMASIAN A, GIYAHI M, CHIZARI FARD G, et al. Removal of heavy metal ions by modified PAN/PANI-Nylon core-shell nanofibers membrane: Filtration performance, antifouling and regeneration behavior[J]. Chemical Engineering Journal,2018,351:1166-1178.
    [25] XIE X, ZHAO Y, QIU P, et al. Investigation of the relationship between infrared structure and pyrolysis reactivity of coals with different ranks[J]. Fuel,2018,216:521-530.
    [26] BALA K, SINGH B. Electrochemical synthesis of cadmium(II) carboxylates compounds at sacrificial cadmium anode[J]. Asian Journal of Chemistry,2017,29(2):336-340.
    [27] PAPAGEORGIOU S K, KOUVELOS E P, FAVVAS E P, et al. Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy[J]. Carbohydrate Research,2010,345(4):469-473.
    [28] ZHANG W, LI C, LIANG M, et al. Preparation of carboxylate-functionalized cellulose via solvent-free mechanochemistry and its characterization as a biosorbent for removal of Pb2+ from aqueous solution[J]. Journal of Hazardous Materials,2010,181(1):468-473.
    [29] ZHU Q, WANG Y, LI M, et al. Activable carboxylic acid functionalized crystalline nanocellulose/PVA-co-PE composite nanofibrous membrane with enhanced adsorption for heavy metal ions[J]. Separation and Purification Technology,2017,186:70-77.
    [30] ZHANG C, LI X, JIANG Z, et al. Selective immobilization of highly valent radionuclides by carboxyl functionalized mesoporous silica microspheres: Batch, XPS, and EXAFS analyses[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):15644-15652.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  1247
  • HTML全文浏览量:  325
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 录用日期:  2020-09-04
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回