留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建

黄露露 张艳玲 王挺 吴礼光 董春颖

黄露露, 张艳玲, 王挺, 等. 弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建[J]. 复合材料学报, 2020, 37(11): 2749-2759. doi: 10.13801/j.cnki.fhclxb.20200318.001
引用本文: 黄露露, 张艳玲, 王挺, 等. 弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建[J]. 复合材料学报, 2020, 37(11): 2749-2759. doi: 10.13801/j.cnki.fhclxb.20200318.001
HUANG Lulu, ZHANG Yanling, WANG Ting, et al. Fabrication of polyvinylidene fluoride blending membranes filled by La-TiO2-reduced graphene oxide with photocatalytic activity[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2749-2759. doi: 10.13801/j.cnki.fhclxb.20200318.001
Citation: HUANG Lulu, ZHANG Yanling, WANG Ting, et al. Fabrication of polyvinylidene fluoride blending membranes filled by La-TiO2-reduced graphene oxide with photocatalytic activity[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2749-2759. doi: 10.13801/j.cnki.fhclxb.20200318.001

弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建

doi: 10.13801/j.cnki.fhclxb.20200318.001
基金项目: 国家自然科学基金(21776250);浙江省自然科学基金(LY20B060001; LY19B060004)
详细信息
    通讯作者:

    王挺,博士,副研究员,研究方向为功能膜材料及其应用 E-mail:zjwtwaiting@hotmail.com

    吴礼光,博士,教授,研究方向为功能膜材料及其应用 E-mail:wulg64@hotmail.com

  • 中图分类号: TQ051.893

Fabrication of polyvinylidene fluoride blending membranes filled by La-TiO2-reduced graphene oxide with photocatalytic activity

  • 摘要: 为提高聚偏氟乙烯(PVDF)超滤膜的通量及抗污染性能,首先利用吸附相反应技术耦合乙醇热处理制备La掺杂TiO2-还原氧化石墨烯(La-TiO2-RGO),再将其与PVDF共混制备La-TiO2-RGO/PVDF抗污染超滤膜。结果表明,均匀分散于PVDF高分子中表面亲水的La-TiO2-RGO增多,La-TiO2-RGO/PVDF共混膜的水通量和抗污染性能也显著提升。当La-TiO2-RGO/PVDF共混膜中出现团聚体,则会削弱其膜通量和抗污染性。在La-TiO2-RGO填充量(与PVDF质量比)为2.0%时,La-TiO2-RGO/PVDF共混膜具有最优纯水通量。La-TiO2-RGO/PVDF共混膜最高纯水通量可达171.5 L·m−2·h−1,是PVDF膜的5倍以上,其通量衰减速率也明显低于PVDF膜。另外,由于La-TiO2-RGO具有可见光催化活性,被污染后的La-TiO2-RGO/PVDF共混膜经过光照处理后用水清洗,其膜通量恢复率较直接用水清洗后的通量恢复率大幅提高;热处理温度升高,La-TiO2-RGO弱可见光活性增强,光照后La-TiO2-RGO/PVDF共混膜通量恢复率变大。但过高热处理温度抑制了La-TiO2-RGO中Ti3+形成,且削弱其光活性,La-TiO2-RGO/PVDF共混膜通量恢复率反而下降;对于La-TiO2-RGO填充量为2.0%的La-TiO2-RGO/PVDF共混膜,被污染后分别采用直接水清洗、仅光照处理2 h、先光照处理2 h后水清洗的膜通量恢复率分别为79.28%、52.42%、90.01%。

     

  • 图  1  不同温度热处理后La-TiO2-RGO的HRTEM图像(内插图为TEM图像)

    Figure  1.  HRTEM images of La-TiO2-RGO treated by solvothermal reduction under different temperatures (Inset are TEM images)

    图  2  不同温度热处理后La-TiO2-RGO的XRD图谱

    Figure  2.  XRD patterns of La-TiO2-RGO treated by solvothermal reduction under different temperatures

    图  3  不同温度热处理后La-TiO2-RGO的FTIR图谱

    Figure  3.  FTIR spectra of La-TiO2-RGO treated by solvothermal reduction under different temperatures

    图  4  不同温度热处理后La-TiO2-RGO的XPS图谱

    Figure  4.  XPS spectra of La-TiO2-RGO treated by solvothermal reduction under different temperatures

    图  5  不同温度热处理后La-TiO2-RGO可见光激发光电流响应曲线

    Figure  5.  Visible light excitation photocurrent response curves of La-TiO2-RGO treated by solvothermal reduction under different temperatures

    图  6  PVDF膜和La-TiO2-RGO/PVDF共混膜表面的SEM图像

    Figure  6.  SEM images of surface of PVDF membrane and La-TiO2-RGO/PVDF blending membranes

    图  7  PVDF膜和La-TiO2-RGO/PVDF共混膜断面的SEM图像

    Figure  7.  SEM images of cross-section of PVDF membrane and La-TiO2-RGO/PVDF blending membranes

    图  8  光照对PVDF膜和La-TiO2-RGO(170)/PVDF-2混合膜通量衰减过程的影响

    Figure  8.  Effect of irradiation on flux decay process of PVDF membrane and La-TiO2-RGO(170)/PVDF-2 blending membrane

    图  9  PVDF膜和及La-TiO2-RGO/PVDF共混膜的抗污染性能

    Figure  9.  Anti-fouling performance of PVDF membrane and La-TiO2-RGO/PVDF blending membranes

    表  1  La-TiO2-还原氧化石墨烯(RGO)/聚偏氟乙烯(PVDF)共混膜各组分含量

    Table  1.   Contents of components of La-TiO2-reduced graphene oxide(RGO)/ polyvinylidene fluoride(PVDF) blending membranes

    MembraneLa-TiO2-RGOVDMAc/
    mL
    Mass of
    PVDF/g
    Mass of
    PEG2000/g
    Mass ratio of La-TiO2-
    RGO to PVDF/%
    Emax/
    MPa
    PVDF 50 7.5 2.5 0 75.3
    La-TiO2-RGO(160)/PVDF-1 La-TiO2-RGO(160) 50 7.5 2.5 1.0 86.7
    La-TiO2-RGO(160)/PVDF-2 La-TiO2-RGO(160) 50 7.5 2.5 2.0 98.9
    La-TiO2-RGO(160)/PVDF-3 La-TiO2-RGO(160) 50 7.5 2.5 3.0 88.1
    La-TiO2-RGO(170)/PVDF-1 La-TiO2-RGO(170) 50 7.5 2.5 1.0 87.2
    La-TiO2-RGO(170)/PVDF-2 La-TiO2-RGO(170) 50 7.5 2.5 2.0 101.1
    La-TiO2-RGO(170)/PVDF-3 La-TiO2-RGO(170) 50 7.5 2.5 3.0 89.5
    Notes: Emax—Maximum tensile strength of membrane; La-TiO2-RGO(160)/PVDF-(1/2/3)—Blending membrane in which mass ratio of La-TiO2-RGO(160) to PVDF is 1%, 2%, 3%, respectively, La-TiO2-RGO(170)/PVDF-(1/2/3) is also understood like this; VDMAc—Volume of N,N-dimethyl acetamide.
    下载: 导出CSV

    表  2  PVDF膜和La-TiO2-RGO/PVDF共混膜的孔隙结构、表面亲水角和膜通量

    Table  2.   Porosities, mean pore sizes, water contact angles and flux of PVDF membrane and La-TiO2-RGO/PVDF blending membranes

    MembranePorosity/%Mean pore size/nmWater contact angle/(°)Jw/(L·m−2·h−1)Jp/(L·m−2·h−1)
    PVDF 30.2 35.1 91.3 37.9 7.4
    La-TiO2-RGO(160)/PVDF-1 61.3 51.5 66.7 145.3 31.5
    La-TiO2-RGO(160)/PVDF-2 71.1 62.3 65.3 169.2 39.6
    La-TiO2-RGO(160)/PVDF-3 68.8 49.7 61.2 119.1 22.4
    La-TiO2-RGO(170)/PVDF-1 65.3 57.2 56.4 149.2 33.4
    La-TiO2-RGO(170)/PVDF-2 70.7 65.3 55.8 171.5 42.8
    La-TiO2-RGO(170)/PVDF-3 69.7 59.7 58.9 155.1 38.7
    Notes: Jw—Water flux; Jp—Bull serum albumin (BSA) flux.
    下载: 导出CSV

    表  3  PVDF膜和La-TiO2-RGO/PVDF共混膜的抗污染性能

    Table  3.   Anti-fouling performance of PVDF membrane and La-TiO2-RGO/PVDF blending membranes

    MembraneR/%RE/%REr/%
    PVDF 32.65 14.19 34.86
    La-TiO2-RGO(160)/PVDF-1 77.40 34.70 82.22
    La-TiO2-RGO(160)/PVDF-2 79.79 48.47 84.51
    La-TiO2-RGO(160)/PVDF-3 63.69 33.55 72.09
    La-TiO2-RGO(170)/PVDF-1 78.59 43.78 86.00
    La-TiO2-RGO(170)/PVDF-2 79.28 52.42 90.01
    La-TiO2-RGO(170)/PVDF-3 66.12 40.87 72.81
    Notes: R—Flux recovery rate of contaminated membrane after washing; RE—Flux recovery rate after illumination for 2 h; REr—Flux recovery rate after illumination for 2 h then washing.
    下载: 导出CSV
  • [1] 朱振亚, 白成玲, 王磊, 等. 氧化石墨烯-氨基酰化酶/聚偏氟乙烯复合膜的制备及特性[J]. 复合材料学报, 2019, 36(11):2495-2501.

    ZHU Zhenya, BAI Chengling, WANG Lei, etal. Preparation and characteristic of graphene oxide-acylase/poly(vinylidenefluoride) composite membrane[J]. Acta Materiae Compositae Sinica,2019,36(11):2495-2501(in Chinese).
    [2] 朱振亚, 白成玲, 王磊, 等. 磺化氧化石墨烯/聚砜复合膜的制备及抗污染性能[J]. 复合材料学报, 2019, 36(11):2515-2521.

    ZHU Zhenya, BAI Chengling, WANG Lei, et al. Preparation and antifouling property of sulfonated graphene oxide/polysulfone composite membrane[J]. Acta Materiae Compositae Sinica,2019,36(11):2515-2521(in Chinese).
    [3] 冯雪婷, 杨盛, 文晨, 等. Ag2CO3@PVDF/氧化石墨烯超滤膜及其分离性能[J]. 化工学报, 2017, 68(5):2169-2176.

    FENG Xueting, YANG Sheng, WEN Chen, et al. Ag2CO3@PVDF/GO ultrafiltration membrane for water purification[J]. CIESC Journal,2017,68(5):2169-2176(in Chinese).
    [4] VENAULT A, CHOU Y N, WANG Y H, et al. A combined polymerization and self-assembling process for the fouling mitigation of PVDF membranes[J]. Journal of Membrane Science,2018,547:134-145. doi: 10.1016/j.memsci.2017.10.040
    [5] SUN C G, FENG X S. Enhancing the performance of PVDF membranes by hydrophilic surface modification via amine treatment[J]. Separation and Purification Technology,2017,185:94-102.
    [6] OTITOJU T A, AHMAD A L, OOI B S. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review[J]. Journal of Water Process Engineering,2016,14:41-59. doi: 10.1016/j.jwpe.2016.10.011
    [7] MA N, CAO J J, LI H Y, et al. Surface grafting of zwitterionic and PEGylated cross-linked polymers toward PVDF membranes with ultralow protein adsorption[J]. Polymer,2019,167:1-12.
    [8] RANA D, MATSUURA T. Surface modifications for antifouling membranes[J]. Chemical Reviews,2010,110(4):2448-2471. doi: 10.1021/cr800208y
    [9] FARAHANIA M H D A, VATANPOUR V. A comprehensive study on the performance and antifouling enhancement of the PVDF mixed matrix membranes by embedding different nanoparticulates: Clay, functionalized carbon nanotube, SiO2 and TiO2[J]. Separation and Purification Technology,2018,197:372-381. doi: 10.1016/j.seppur.2018.01.031
    [10] BET-MOUSHOUL E, MANSOURANAH Y, FARHADI K, et al. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes[J]. Chemical Engineering Journal,2016,283:29-46.
    [11] CHEN F T, SHI X X, CHEN X B, et al. Preparation and characterization of amphiphilic copolymer PVDF-g-PMABS and its application in improving hydrophilicity and protein fouling resistance of PVDF membrane[J]. Applied Surface Science,2018,427:787-797. doi: 10.1016/j.apsusc.2017.08.096
    [12] YUAN H K, REN J. Preparation of poly(vinylidene fluoride) (PVDF)/acetalyzed poly(vinyl alcohol) ultrafiltration membrane with the enhanced hydrophilicity and the anti-fouling property[J]. Chemical Engineering Research and Design,2017,121:348-359. doi: 10.1016/j.cherd.2017.03.023
    [13] LIU F, XU Y Y, ZHU B K, et al. Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes[J]. Journal of Membrane Science,2009,345(1-2):331-339. doi: 10.1016/j.memsci.2009.09.020
    [14] 李妍, 周晓吉, 沈舒苏, 等. 一种两亲性共聚物的合成及其对 PVDF膜的改性研究[J]. 膜科学与技术, 2016, 36(6):70-77.

    LI Yan, ZHOU Xiaoji, SHEN Shusu, et al. Synthesis of a new type of amphiphilic copolymer and its effects on the properties of the modified poly-vinylidene fluoride membrane[J]. Membrane Science and Technology,2016,36(6):70-77(in Chinese).
    [15] HEGAB H M, ZOU L. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification[J]. Journal of Membrane Science,2015,484:95-106. doi: 10.1016/j.memsci.2015.03.011
    [16] ONG C S, GOH P S, LAU W J, et al. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review[J]. Desalination,2016,393:2-15. doi: 10.1016/j.desal.2016.01.007
    [17] XU Z W, WU T F, SHI J, et al. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment[J]. Journal of Membrane Science,2016,520:281-293. doi: 10.1016/j.memsci.2016.07.060
    [18] DAMODAR R A, YOU S J, CHOU H H. Study theself cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes[J]. Journal of Hazardous Materials,2009,172(2-3):1321-1328. doi: 10.1016/j.jhazmat.2009.07.139
    [19] MOGHADAM M T, LESAGE G, MOHAMMADI T, et al. Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV-coupled ultrafiltration[J]. Journal of Applied Polymer Science,2015,132(21):41731.
    [20] LIAO C J, YU P, ZHAO J Q, et al. Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials[J]. Desalination,2011,272(1-3):59-65.
    [21] WU L G, ZHANG X Y, WANG T, et al. Enhanced performance of polyvinylidene fluoride ultrafiltration membranes by incorporating TiO2/graphene oxide[J]. Chemical Engineering Research and Design,2019,141:492-501.
    [22] 许智勇, 李冰蕊, 潘家豪, 等. TiO2复合催化剂弱光催化降解模拟海水中苯酚及其催化活性的影响[J]. 环境科学学报, 2017, 37(12):4593-4601.

    XU Zhiyong, LI Bingrui, PAN Jiahao, et al. Photodegradation of phenol in artificial seawater by TiO2 composite catalysts under weak UV irradiation[J]. Acta Scientiae Circumstantiae,2017,37(12):4593-4601(in Chinese).
    [23] LI J F, XU Z L, YANG H. Microporous polyethersulfone membranes prepared under the combined precipitation conditions with non-solvent additives[J]. Polymers for Advanced Technologies,2008,19(4):251-257. doi: 10.1002/pat.982
    [24] FENG C S, SHI B L, LI G M, et al. Preparation and properties of microporous membrane from poly(vinylidene fluoride-co-tetrafluoroethylene) (F2.4) for membrane distillation[J]. Journal of Membrane Science,2004,237(1-2):15-24. doi: 10.1016/j.memsci.2004.02.007
    [25] WANG T, ZHANG Y L, PAN J H, et al. Hydrothermal reduction of commercial P25 photocatalysts to expand their visible-light response and enhance their performance for photodegrading phenol in high-salinity wastewater[J]. Applied Surface Science,2019,480:896-904. doi: 10.1016/j.apsusc.2019.03.052
    [26] VATANPOUR V, MADAENI S S, MORADIAN R, et al. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite[J]. Journal of Membrane Science,2011,375(1-2):284-294.
    [27] SILVA T L S, MORALES-TORRES S, FIGUEIREDO J L, et al. Multi-walled carbon nanotube/PVDF blended membranes with sponge- and finger-like pores for direct contact membrane distillation[J]. Desalination,2015,357:233-245. doi: 10.1016/j.desal.2014.11.025
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1756
  • HTML全文浏览量:  605
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-23
  • 录用日期:  2020-02-27
  • 网络出版日期:  2020-03-19
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回