留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能LiNi0.8Co0.1Mn0.1O2正极材料的合成及其电化学性能

蔡厚雪 袁安 冯茹茜 邓颜 汤昊 谭龙 孙润光

蔡厚雪, 袁安, 冯茹茜, 等. 高性能LiNi0.8Co0.1Mn0.1O2正极材料的合成及其电化学性能[J]. 复合材料学报, 2021, 38(6): 1882-1889. doi: 10.13801/j.cnki.fhclxb.20200922.005
引用本文: 蔡厚雪, 袁安, 冯茹茜, 等. 高性能LiNi0.8Co0.1Mn0.1O2正极材料的合成及其电化学性能[J]. 复合材料学报, 2021, 38(6): 1882-1889. doi: 10.13801/j.cnki.fhclxb.20200922.005
CAI Houxue, YUAN An, FENG Ruxi, et al. Investigations on synthesis and electrochemical performance of high performance LiNi0.8Co0.1Mn0.1O2 cathode material[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1882-1889. doi: 10.13801/j.cnki.fhclxb.20200922.005
Citation: CAI Houxue, YUAN An, FENG Ruxi, et al. Investigations on synthesis and electrochemical performance of high performance LiNi0.8Co0.1Mn0.1O2 cathode material[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1882-1889. doi: 10.13801/j.cnki.fhclxb.20200922.005

高性能LiNi0.8Co0.1Mn0.1O2正极材料的合成及其电化学性能

doi: 10.13801/j.cnki.fhclxb.20200922.005
基金项目: 江西省科技厅青年科学基金(20192BAB216010)
详细信息
    通讯作者:

    谭龙,博士,助理研究员,研究方向为锂离子电池 Email: tgoodenough@ncu.edu.cn

  • 中图分类号: TB34;TM911

Investigations on synthesis and electrochemical performance of high performance LiNi0.8Co0.1Mn0.1O2 cathode material

  • 摘要: 通过改变煅烧过程中的气氛条件,以简单的固相法合成工艺获得了优异性能的LiNi0.8Co0.1Mn0.1O2(NCM811)材料,并探究了不同O2流量对样品的结构和电化学性能的影响。结果表明,当O2流量为0.1 L/min时,所合成的LiNi0.8Co0.1Mn0.1O2样品具有最低的阳离子混乱程度和较大的晶面间距。该样品在1 C、4.3 V下循环100次后的放电容量为174 mA·h·g−1,容量保持率高达98.3%;在更高的2 C倍率下循环100次后的保持率也达96.8%,并在高截止电压条件下表现良好。从实验结果还可得出,过低的O2流量不利于Ni2+转化为Ni3+,从而造成较高的阳离子混排度,而过高的O2流量则会使所合成LiNi0.8Co0.1Mn0.1O2材料的晶胞体积减小,不利于Li+的脱嵌。

     

  • 图  1  不同O2流量合成的LiNi0.8Co0.1Mn0.1O2材料的XRD图谱

    Figure  1.  XRD spectra of LiNi0.8Co0.1Mn0.1O2 materials synthesized under different O2-flow rates

    图  2  不同O2流量合成的LiNi0.8Co0.1Mn0.1O2的SEM图像

    Figure  2.  SEM images of LiNi0.8Co0.1Mn0.1O2 synthesized under different O2-flow rates

    图  3  LiNi0.8Co0.1Mn0.1O2材料在17 mA·g−1下的首次充放电曲线 (a)、LiNi0.8Co0.1Mn0.1O2材料在17 mA·g−1下的循环性能图 (b)

    Figure  3.  Initial charge-discharge curves of LiNi0.8Co0.1Mn0.1O2 tested at 0.1 C (a) , cycling performance of LiNi0.8Co0.1Mn0.1O2 tested at 17 mA·g−1 (b)

    图  4  LiNi0.8Co0.1Mn0.1O2材料的倍率性能 (a) 、LiNi0.8Co0.1Mn0.1O2材料在不同C倍率下的放电曲线 ((b)~(e))

    Figure  4.  Rate performance of LiNi0.8Co0.1Mn0.1O2 (a), discharge curves of LiNi0.8Co0.1Mn0.1O2 at different C rates ((b)-(e))

    1 C=170 mA·g−1

    图  5  LiNi0.8Co0.1Mn0.1O2材料在170 mA·g−1 (a)和340 mA·g−1 (b)条件下的循环性能

    Figure  5.  Cycling performance of the LiNi0.8Co0.1Mn0.1O2 at 170 mA·g−1 (a) and 340 mA·g−1 (b)

    图  6  LiNi0.8Co0.1Mn0.1O2在3~4.5 V下的循环性能 (a),LiNi0.8Co0.1Mn0.1O2-0.05 (b)、LiNi0.8Co0.1Mn0.1O2-0.1 (c) 第1次、第50次和第100次充放电的dQ·dV-1曲线

    Figure  6.  Cycling performance of LiNi0.8Co0.1Mn0.1O2 tested in the voltage range of 3-4.5 V (a), and the dQ·dV−1 curves of the 1 st, 50 th and 100 th cycles for LiNi0.8Co0.1Mn0.1O2-0.05 (b) and LiNi0.8Co0.1Mn0.1O2-0.1 (c)

    图  7  LiNi0.8Co0.1Mn0.1O2-0.05和LiNi0.8Co0.1Mn0.1O2-0.1样品第1圈 (a)、第50圈 (b) 的电化学阻抗图谱

    Figure  7.  Electrochemical impedance spectra of the LiNi0.8Co0.1Mn0.1O2-0.05 and LiNi0.8Co0.1Mn0.1O2-0.1 samples after 1 st cycle (a) and 50 th cycle (b)

    RsSolution resistance; Rct—Charge transfer resistance; Q—Constant phase angle element

    表  1  不同O2流量合成的LiNi0.8Co0.1Mn0.1O2的晶胞参数

    Table  1.   Cell parameters of LiNi0.8Co0.1Mn0.1O2 synthesized under different O2-flow rates

    Samplea/nmc/nmc/aV/(10−3nm3)I(003)/I(104)O2-flow rates/(L·min−1)
    LiNi0.8Co0.1Mn0.1O2−0.05 0.28670 1.41621 4.9397 100.81 1.61 0.05
    LiNi0.8Co0.1Mn0.1O2−0.1 0.28665 1.41649 4.9416 100.79 1.99 0.1
    LiNi0.8Co0.1Mn0.1O2−0.2 0.28620 1.40917 4.9238 99.96 1.79 0.2
    LiNi0.8Co0.1Mn0.1O2−0.3 0.28621 1.40874 4.9220 99.94 1.75 0.3
    Notes: a,c—Cell parameters; V—Cell volume; I(003)/I(104)—Intensity ratio of peak (003) to peak (104).
    下载: 导出CSV

    表  2  LiNi0.8Co0.1Mn0.1O2-0.05和LiNi0.8Co0.1Mn0.1O2-0.1样品拟合后的EIS参数

    Table  2.   EIS parameters of the LiNi0.8Co0.1Mn0.1O2-0.05 and LiNi0.8Co0.1Mn0.1O2-0.1 samples after fitting

    SampleCycleRs/ΩRsf/ΩRct/Ω
    LiNi0.8Co0.1Mn0.1O2-0.05 1 5.126 8.634 4.725
    50 3.77 53.56 113.7
    LiNi0.8Co0.1Mn0.1O2-0.1 1 6.104 7.314 5.192
    50 4.71 17.09 53.67
    Note: Rsf—Surface film resistance.
    下载: 导出CSV
  • [1] KIM T, SONG W, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A,2019,7:2942-2964. doi: 10.1039/C8TA10513H
    [2] LUO X D, YIN Y Z, YUAN M, et al. High performance composites of spinel LiMn2O4/3DG for lithium ion batteries[J]. RSC Advances,2018,8(2):877-884. doi: 10.1039/C7RA12613A
    [3] LIU X P, CHEN Q Q, LI Y W, et al. Synergistic modification of magnesium fluoride/sodium for improving the electrochemical performances of high-nickel ternary (NCM811) cathode materials[J]. Journal of The Electrochemical Society,2019,166(14):A3480-A3486. doi: 10.1149/2.1301914jes
    [4] OHZUKU T, NAGAYAMA M, TSUJI K, et al. High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: Toward rechargeable capacity more than 300 mA∙h∙g-1[J]. Journal of Materials Chemistry A,2011,21:10179-10188. doi: 10.1039/c0jm04325g
    [5] ZHANG X, JIANG W J, MAUGER A, et al. Minimization of the cation mixing in Li1+x(NMC)1−xO2 as cathode material[J]. Journal of Power Sources,2010,195(5):1292-1301. doi: 10.1016/j.jpowsour.2009.09.029
    [6] FAN Q, YANG S, LIU J, et al. Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries[J]. Journal of Power Sources,2019,421:91-99. doi: 10.1016/j.jpowsour.2019.03.014
    [7] BIANCHI V, BACH S, BELHOMME C, et al. Electrochemical investigation of the Li insertion-extraction reaction as a function of lithium deficiency in Li1-xNi1+xO2[J]. Electrochimica Acta,2001,46(7):999-1011. doi: 10.1016/S0013-4686(00)00681-2
    [8] DOLOTKO O, SENYSHYN A, MÜHLBAUER M J, et al. Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction[J]. Journal of Power Sources,2014,255:197-203. doi: 10.1016/j.jpowsour.2014.01.010
    [9] VU D L, LEE J W. Na-doped layered LiNi0.8Co0.1Mn0.1O2 with improved rate capability and cycling stability[J]. Journal of Solid State Electrochemistry,2018,22:1165-1173. doi: 10.1007/s10008-017-3863-1
    [10] WU F, TIAN J, SU Y, et al. Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries[J]. Journal of Power Sources,2014,269:747-754. doi: 10.1016/j.jpowsour.2014.07.057
    [11] YANG G, QIN X Z, WANG B, et al. Well-ordered spherical LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Journal of Materials Research,2019,35(1):1-7.
    [12] LIANG R, YU F D, GOH K, et al. Influence of oxygen percentage in calcination atmosphere on structure and electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Ceramics International,2019,45:18965-18971. doi: 10.1016/j.ceramint.2019.06.134
    [13] XU S, DU C, XU X, et al. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries[J]. Electrochimica Acta,2017,248:534-540. doi: 10.1016/j.electacta.2017.07.169
    [14] LIANG L, SUN X, WU C, et al. Nasicon-type surface functional modification in core-shell LiNi0.5Mn0.3Co0.2O2@NaTi2(PO4)3 cathode enhances its high-voltage cycling stability and rate capacity toward Li-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(6):5498-5510. doi: 10.1021/acsami.7b15808
    [15] YUAN H, SONG W, WANG M, et al. Lithium-ion conductive coating layer on nickel rich layered oxide cathode material with improved electrochemical properties for Li-ion battery[J]. Journal of Alloys and Compounds,2019,784:1311-1322. doi: 10.1016/j.jallcom.2019.01.072
    [16] CHENG C X, TAN X L, LIU H W, et al. High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation[J]. Materials Research Bulletin,2011,46(11):2032-2035. doi: 10.1016/j.materresbull.2011.07.004
    [17] WU S H, YANG C W. Preparation of LiNi1-yCoyO2 based cathode materials for lithium batteries by a co-precipitation method[J]. Journal of Power Sources,2005,146:270-274. doi: 10.1016/j.jpowsour.2005.03.027
    [18] FLY A, CHEN R. Rate dependency of incremental capacity analysis (dQ/dV) as a diagnostic tool for lithium-ion batteries[J]. Journal of Energy Storage,2020,29:101329. doi: 10.1016/j.est.2020.101329
    [19] YOON C S, RYU H H, PARK G T, et al. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batterie[J]. Journal of Materials Chemistry A,2018,6(9):4126-4132. doi: 10.1039/C7TA11346C
    [20] PARK K J, JUNG H G, KUO L Y, et al. Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries[J]. Advanced Energy Materials,2018,8(25):1801202-1801211. doi: 10.1002/aenm.201801202
    [21] RYU H H, PARK K J, YOON D R, et al. Li[Ni0.9Co0.09W0.01]O2: A new type of layered oxide cathode with high cycling stability[J]. Advanced Energy Materials,2019,9(44):1902698. doi: 10.1002/aenm.201902698
    [22] YOON C S, JUN D W, MYUNG S T, et al. Structural stability of LiNiO2 Cycled above 4.2 V[J]. ACS Energy Letter,2017,2(5):1150-1155. doi: 10.1021/acsenergylett.7b00304
    [23] SUN H H, MANTHIRAM A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries[J]. Chemistry of Materials,2017,29(19):8486-8493. doi: 10.1021/acs.chemmater.7b03268
    [24] CHEN J, YANG H P, LI T H, et al. The effects of reversibility of H2-H3 phase transition on Ni-rich layered oxide cathode for high-energy lithium-ion batteries[J]. Frontiers in Chemistry,2019,7:500.
    [25] LIU J, REEJA-JAYAN B, MANTHIRAM A. Conductive surface modification with aluminum of high capacity layered Li-[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes[J]. The Journal of Physical Chemistry C,2010,114(20):9528-9533. doi: 10.1021/jp102050s
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1090
  • HTML全文浏览量:  358
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 录用日期:  2020-09-07
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回