留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene基水凝胶复合材料的研究进展

朱韵伊 彭伟 林泽慧 林武鋆 彭鸣 谭勇文

朱韵伊, 彭伟, 林泽慧, 等. MXene基水凝胶复合材料的研究进展[J]. 复合材料学报, 2021, 38(7): 2010-2024. doi: 10.13801/j.cnki.fhclxb.20210302.004
引用本文: 朱韵伊, 彭伟, 林泽慧, 等. MXene基水凝胶复合材料的研究进展[J]. 复合材料学报, 2021, 38(7): 2010-2024. doi: 10.13801/j.cnki.fhclxb.20210302.004
ZHU Yunyi, PENG Wei, LIN Zehui, et al. Research progress of MXene-based hydrogel composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2010-2024. doi: 10.13801/j.cnki.fhclxb.20210302.004
Citation: ZHU Yunyi, PENG Wei, LIN Zehui, et al. Research progress of MXene-based hydrogel composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2010-2024. doi: 10.13801/j.cnki.fhclxb.20210302.004

MXene基水凝胶复合材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20210302.004
基金项目: 国家自然科学基金(51771072;51901076);湖南省杰出青年科学基金(2020JJ2006)
详细信息
    通讯作者:

    谭勇文,博士,教授,研究方向为多孔材料设计、制备及应用 Email:tanyw@hnu.edu.cn

  • 中图分类号: TB33

Research progress of MXene-based hydrogel composites

  • 摘要: MXenes是一类新型二维纳米片,随着MXenes材料的迅速发展,近年来,兴起了一种新型材料,即MXene基水凝胶复合材料,其在生物医学、能源、电磁干扰屏蔽、传感器等方面均具有广泛的应用前景。但目前MXene基水凝胶复合材料的制备和应用仍处于起步阶段。本文主要回顾MXene基水凝胶复合材料的最新进展,详细梳理MXene基水凝胶复合材料的制备方法,并重点介绍其潜在应用前景。最后,针对MXene基水凝胶复合材料领域中所面临的机遇和挑战进行展望。

     

  • 图  1  已报道的MXene基水凝胶复合材料的制备方法及其应用现状示意图

    Figure  1.  Schematic diagram of reported preparation method and application status of MXene-based hydrogel composite

    图  2  Ti3C2Tx水凝胶的制备[32]

    Figure  2.  Fabrication of pristine Ti3C2Tx hydrogel[32]

    图  3  还原氧化石墨烯(RGO)-MXene复合水凝胶的合成过程示意图[34]

    Figure  3.  Schematic illustration of formation process of reduced graphene oxide (RGO)-MXene composite hydrogel[34]

    图  4  MXene纳米复合双网络水凝胶的合成过程[36]

    Figure  4.  Synthesis process of MXene nanocomposite double network hydrogel[36]

    MBAA—N,N′-Methylene diacrylamide; NIPAM—N-Isopropyl acrylamide; HAPAM—Hydrophobically associated polyacrylamide; PNIPAM—Poly(N-isopropyl acrylamide)

    图  5  Zn2+介导的MXene-氧化石墨烯(GO)纳米复合水凝胶的示意图[17]

    Figure  5.  Schematic process of Zn2+ mediated MXene-graphene oxide (GO) nanocomposite hydrogel[17]

    图  6  3D MXene-RGO复合气凝胶(a)[40]及MXene/聚酰亚胺(PI)复合气凝胶(b)[41]的合成示意图

    Figure  6.  Synthesis process of 3D MXene-RGO composite aerogel (a)[40] and MXene-polyimide (PI) composite aerogel (b)[41]

    PP—Polypropylene; PAA—Poly(amic acid); AAO—Anodized aluminum oxide

    图  7  MXene水凝胶制成的电极图片(a); MXene粉末和水凝胶在室温下扫描速率为20 mV·s−1时5个循环后的电化学阻抗图谱(b); MXene水凝胶电极的电容保持率,插图为MXene水凝胶在1 V·s−1的扫描速率下在第1个周期和第10000个周期的CV曲线(c)[30]; MXH、MX-GN膜和MXene膜电极在电流密度为0.2~1000 A·g−1时的高速率性能(d); 三种材料在1000 mV·s−1时的循环伏安曲线(e); 三种材料在开路电位下收集的奈奎斯特图(f)[29]

    Figure  7.  Picture of electrodes made of MXene hydrogel (a); Electrochemical impedance spectroscopy of MXene powder and hydrogel at room temperature at a scanning rate of 20 mV·s−1 after 5 cycles (b); Capacitance retention test of MXene hydrogel electrode, inset shows CV curve of MXene hydrogel at 1st cycle and 10000 th cycle at a scanning rate of 1 V·s−1 (c)[30]; Rate performance of MXH, MX-GN film and MXene film electrodes at current density of 0.2–1000 A·g−1 (d); Cyclic voltammetry curves of three materials collected at 1000 mV·s−1 (e); Nyquist plots of three materials collected at open circuit potential (f)[29]

    图  8  在1次循环(a)和100次循环(b)后MXene含量为30%的MXene/rGO复合气凝胶(MX/G-30)电极的SEM图橡; RGO和MX-G-30电极的Li-S电池在扫描速率为0.1 mV·s−1的循环伏安曲线(c); MX-G-30电极的Li-S电池在不同速率下的充电/放电曲线(d);MX-G-30电极的Li-S电池在500个循环的长期循环性能(e)[55]

    Figure  8.  SEM images of MXene/rGO hybrid aerogel with 30% MXene contents (MX/G-30) electrode after 1 cycle (a) and 100 cycles (b); Li-S battery with RGO and MX-G-30 electrodes at a scan rate of 0.1 mV·s−1 cyclic voltammetry curve (c); Charge/discharge curve of Li-S battery with MX-G-30 electrode at different rates (d); Li-S battery with MX-G-30 electrode long-term cycle performance of 500 cycles (e)[55]

    图  9  石墨烯气凝胶(GA) (a)、80% Ti3C2Tx MXene/RGO混合气凝胶(MGA-4) (b)侧面的SEM图像; 不同密度的GA和MGA-4的电导率(c);Ti3C2Tx含量对MGA的电导率的影响(d); MGA纳米复合材料的电导率(e)和EMI屏蔽性能(f)[56]

    Figure  9.  Side-view SEM images of graphene aerogel (GA) (a) and Ti3C2Tx MXene/RGO hybrid aerogel with 80% MXene contents (MGA-4) (b); Comparison of electrical conductivities of GA and MGA-4 with different bulk densities (c); Influence of Ti3C2Tx content on electrical conductivity of MGA (d); Electrical conductivity (e) and EMI shielding performance of MGA nanocomposite[56]

    图  10  MXene有机水凝胶(MNOH)和MXene纳米复合水凝胶(MNH)分别在低温下与LED灯的串联电路(a); 在不同的施加应变下基于MNOH传感器的相对电阻变化(b); 在微小应变(c)和较大应变(d)下MNOH传感器的相对电阻变化; 手指不同角度弯曲运功(e)及吞咽动作(f)[37]

    Figure  10.  Series circuit of MXene nanocomposite organohydrogel (MNOH) or MXene nanocomposite hydrogel (MNH) with LED lamp at low temperature, respectively (a); Relative resistance change based on MNOH sensor under different applied strain (b); Tiny strain (c) and high strain (d) relative resistance change of MNOH sensor; Fingers bending at different angles (e) and swallowing movements (f)[37]

    图  11  MXene基水凝胶(M-gel)发生器的制作示意图(a); 负载电阻为10 MΩ的电压输出(b); 将M-gel发生器封装在一块牛肉内(c)并测试(d)[61]

    Figure  11.  Schematic illustration of MXene-based hydrogel (M-gel) generator(a); Voltage output with a load resistance of 10 MΩ (b); Encapsulate M-gel generator inside a piece of beef (c), and measurement setup (d)[61]

    图  12  Ti3C2Tx水凝胶中垂直对齐通道快速水传输的显微镜图像(a); 不同浓度的Ti3C2Tx分散体的紫外-可见光图谱(b); 在1 kW·m−2辐射下原始Ti3C2Tx水凝胶的表面温度(c); 原始Ti3C2Tx水凝胶的蒸汽产生速率的测试设备(d); 比较不同原始Ti3C2Tx水凝胶的蒸发速率投影面积(e);Ti3C2Tx水凝胶在不同阳光照射下的稳定性测试和蒸汽产生性能(f)[32]

    Figure  12.  Microscopic image of fast water transmission in vertically aligned channels of Ti3C2Tx hydrogel (a); UV-vis spectra of Ti3C2Tx dispersions of different concentrations (b); Surface temperature of original Ti3C2Tx hydrogel under 1 kW·m−2 radiation (c); Test equipment for steam generation rate of original Ti3C2Tx hydrogel (d); Compare evaporation rate projection area of different original Ti3C2Tx hydrogels (e); Stability test and steam generation performance of Ti3C2Tx hydrogel under different sun illumination (f)[32]

  • [1] ELSHERBINY I M, ABDELHAMID M I, RASHAD M, et al. New calcareous soil-alginate composites for efficient uptake of Fe(Ⅲ), Mn(Ⅱ) and As(Ⅴ) from water[J]. Carbohydrate Polymers,2013,96(2):450-459. doi: 10.1016/j.carbpol.2013.04.021
    [2] 金淑萍, 柳明珠, 陈世兰, 等. 智能聚合物和水凝胶的响应特性及其应用[J]. 物理化学学报, 2007, 23(3):438-446. doi: 10.3866/PKU.WHXB20070330

    JIN Shupin, LIU Mingzhu, CHEN Shilan, et al. Responsive properties and applications of the intelligent polymers and hydrogels[J]. Acta Physico-Chimica Sinica,2007,23(3):438-446(in Chinese). doi: 10.3866/PKU.WHXB20070330
    [3] HONG S, SYCKS D, CHAN H F, et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures[J]. Advanced Materials,2015,27(27):4035-4040. doi: 10.1002/adma.201501099
    [4] HAO G P, HIPPAUF F, OSCHATZ M, et al. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors[J]. ACS Nano,2014,8(7):7138-7146. doi: 10.1021/nn502065u
    [5] HAN L, LU X, WANG M H, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics[J]. Small,2017,13(2):1601916. doi: 10.1002/smll.201601916
    [6] YANG X J, LIU X, LIU Z, et al. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles[J]. Advanced Materials,2012,24(21):2890-2895. doi: 10.1002/adma.201104797
    [7] FUSCO S, SAKAR M S, KENNEDY S, et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions[J]. Advanced Materials,2014,26(6):952-957. doi: 10.1002/adma.201304098
    [8] HUANG C C, BAI H, LI C, et al. A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents[J]. Chemical Communications,2011,47(17):4962-4964. doi: 10.1039/c1cc10412h
    [9] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th thanniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [10] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [11] LUKATSKAYA M, MASHTALIR O, REN C, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341(6153):1502-1505. doi: 10.1126/science.1241488
    [12] SUN Z M. Progress in research and development on MAX phases: A family of layered ternary compounds[J]. International Materials Reviews,2013,56(3):143-166.
    [13] ANASORI B, LUKATSKAYA M, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2:16098. doi: 10.1038/natrevmats.2016.98
    [14] ZHANG W, MA J, ZHANG W J. A multidimensional nanostructural design towards electrochemically stable and mechanically strong hydrogel electrodes[J]. Nanoscale,2020,12(12):6637-6643. doi: 10.1039/D0NR01414A
    [15] QI Q, ZHANG H, ZHANG P, et al. Self-assembled sandwich hollow porous carbon sphere@MXene composites as superior Li-S battery cathode hosts[J]. 2D Materials,2020,7(2):025049.
    [16] HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced Materials,2018,30(52):1804779. doi: 10.1002/adma.201804779
    [17] LIN Z, LIU J, PENG W, et al. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding[J]. ACS Nano,2020,14(2):2109-2117. doi: 10.1021/acsnano.9b08832
    [18] ZHANG Y, LEE K H, ANJUM D H, et al. MXenes stretch hydrogel sensor performance to new limits[J]. Science Advances,2018,4(6):aat0098. doi: 10.1126/sciadv.aat0098
    [19] RASOOL K, HELAL M, ALI A, et al. Antibacterial activity of Ti3C2Tx MXene[J]. ACS Nano,2016,10(3):3674-3684. doi: 10.1021/acsnano.6b00181
    [20] CHENG L, CHEN Q, LI J, et al. Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst[J]. Applied Catalysis B: Environmental,2020,267:118379. doi: 10.1016/j.apcatb.2019.118379
    [21] VENKATESHALU S, GRACE A. MXenes: A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond[J]. Applied Materials Today,2020,18:100509. doi: 10.1016/j.apmt.2019.100509
    [22] QIN L, YANG D, ZHANG M, et al. Superelastic and ultralight electrospun carbon nanofiber/MXene hybrid aerogels with anisotropic microchannels for pressure sensing and energy storage[J]. Journal of Colloid and Interface Science,2021,589:264-274. doi: 10.1016/j.jcis.2020.12.102
    [23] LI W, LI X, CHANG W, et al. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation[J]. Nano Research,2020,13:3048-3056. doi: 10.1007/s12274-020-2970-y
    [24] YU Z, WU P. Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation[J]. Advanced Materials Technologies,2020,5(6):2000065. doi: 10.1002/admt.202000065
    [25] KAJIYAMA S, SZABOVA L, IINUMA H, et al. Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination[J]. Advanced Energy Materials,2017,7(9):1601873. doi: 10.1002/aenm.201601873
    [26] WAN W, TAO M, CAO H, et al. Enhanced dielectric properties of homogeneous Ti3C2Tx MXene@SiO2/polyvinyl alcohol composite films[J]. Ceramics International,2020,46(9):13862-13868. doi: 10.1016/j.ceramint.2020.02.179
    [27] CAO W, CHEN F, ZHU Y, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano,2018,12(5):4583-4593. doi: 10.1021/acsnano.8b00997
    [28] CHEN Y, XIE X, XIN X, et al. Ti3C2Tx-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis[J]. ACS Nano,2019,13(1):295-304. doi: 10.1021/acsnano.8b06136
    [29] SHANG T, LIN Z, QI C, et al. 3D macroscopic architectures from self-assembled MXene hydrogels[J]. Advanced Functional Materials,2019,29(33):1903960. doi: 10.1002/adfm.201903960
    [30] DENG Y, SHANG T, WU Z, et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions[J]. Advanced Materials,2019,31(43):1902432. doi: 10.1002/adma.201902432
    [31] LIN Z, BARBARA D, TABERNA P, et al. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte[J]. Power Sources,2016,326:575-579. doi: 10.1016/j.jpowsour.2016.04.035
    [32] CHEN H, MA H, ZHANG P, et al. Pristine titanium carbide MXene hydrogel matrix[J]. ACS Nano,2020,14(8):10471-10479. doi: 10.1021/acsnano.0c04379
    [33] YANG C, JIANG Q, LI W, et al. Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheets for methanol oxidation[J]. Chemistry of Materials,2019,31(22):9277-9287. doi: 10.1021/acs.chemmater.9b02115
    [34] WYCHOWANIEC J, LITOWCZENKO J, TADYSZAK K, et al. Unique cellular network formation guided by heterostructures based on reduced graphene oxide-Ti3C2Tx MXene hydrogels[J]. Acta Biomater,2020,115:104-115. doi: 10.1016/j.actbio.2020.08.010
    [35] WANG Q, PAN X, WANG X, et al. Spider web-inspired ultra-stable 3D Ti3C2Tx (MXene) hydrogels constructed by temporary ultrasonic alignment and permanent in-situ self-assembly fixation[J]. Composites Part B: Engineering,2020,197:108187. doi: 10.1016/j.compositesb.2020.108187
    [36] ZHANG Y, CHEN K, LI Y, et al. High-strength, self-healable, temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor[J]. ACS Applied Materials & Interfaces,2019,11(50):47350-47357.
    [37] LIAO H, GUO X, WAN P, et al. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors[J]. Advanced Functional Materials,2019,29(39):1904507. doi: 10.1002/adfm.201904507
    [38] TAO N, ZHANG D, LI X, et al. Near-infrared light-responsive hydrogels via peroxide-decorated MXene-initiated polymerization[J]. Chemical Science,2019,10(46):10765-10771. doi: 10.1039/C9SC03917A
    [39] YEH C, RAIDONGIA K, SHAO J, et al. On the origin of the stability of graphene oxide membranes in water[J]. Nature Chemistry,2015,7:166-170. doi: 10.1038/nchem.2145
    [40] MA Y, YUE Y, ZHANG H, et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor[J]. ACS Nano,2018,12(4):3209-3216. doi: 10.1021/acsnano.7b06909
    [41] LIU J, ZHANG H B, XIE X, et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels[J]. Small,2018,14(45):1802479. doi: 10.1002/smll.201802479
    [42] GEORGE S M, KANDASUBRAMANIAN B. Advancements in MXene-Polymer composites for various biomedical applications[J]. Ceramics International,2020,46(7):8522-8535. doi: 10.1016/j.ceramint.2019.12.257
    [43] GHIDIU M, LUKATSKAYA M R, ZHAO M, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516:78-81. doi: 10.1038/nature13970
    [44] LIN Z, SUN D, HUANG Q, et al. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for Lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(27):14096-14100. doi: 10.1039/C5TA01855B
    [45] LUKATSKAYA M R, KOTA S, LIN Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy,2017,2:17105. doi: 10.1038/nenergy.2017.105
    [46] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137-1140. doi: 10.1126/science.aag2421
    [47] LIU J, ZHANG H B, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials,2017,29(38):1702367. doi: 10.1002/adma.201702367
    [48] MA Y, LIU N, LI L, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances[J]. Nature Communication,2017,8:1207. doi: 10.1038/s41467-017-01136-9
    [49] XU B, ZHU M, ZHANG W, et al. Field-effect transistors: Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity[J]. Advanced Materials,2016,28(17):3333-3339. doi: 10.1002/adma.201504657
    [50] YU M, ZHOU S, WANG Z, et al. Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries[J]. Energy Storage Materials,2019,20:98-107. doi: 10.1016/j.ensm.2018.11.028
    [51] WU X, WANG Z, YU M, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials,2017,29(24):1607017. doi: 10.1002/adma.201607017
    [52] NIU S, WANG Z, YU M, et al. MXene-based electrode with enhanced pseudocapacitance and volumetric capacity for power-type and ultra-long life lithium storage[J]. ACS Nano,2018,12(4):3928-3937. doi: 10.1021/acsnano.8b01459
    [53] LUO J, WANG C, WANG H, et al. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes[J]. Advanced Functional Materials,2019,29(3):1805946. doi: 10.1002/adfm.201805946
    [54] ZHANG X, LV R, WANG A, et al. MXene aerogel scaffolds for high-rate lithium metal anodes[J]. Angewandte Chemie International Edition,2018,57(46):15028-15033. doi: 10.1002/anie.201808714
    [55] SONG J, GUO X, ZHANG J, et al. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(11):6507-6513. doi: 10.1039/C9TA00212J
    [56] ZHAO S, ZHANG H, LUO J, et al. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances[J]. ACS Nano,2018,12(11):11193-11202. doi: 10.1021/acsnano.8b05739
    [57] HAN M, YIN X, HANTANASIRISAKUL K, et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption[J]. Advanced Optical Materials,2019,7(10):1900267.
    [58] WEI Y, XIANG L, OU H, et al. MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality[J]. Advanced Functional Materials,2020,30(48):2005135. doi: 10.1002/adfm.202005135
    [59] WANG L, ZHANG M, YANG B, et al. Highly compressible, thermally stable, light-weight and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor[J]. ACS Nano,2020,14(8):10633-10647. doi: 10.1021/acsnano.0c04888
    [60] MAO L, HU S, GAO Y, et al. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation[J]. Advanced Healthcare Materials,2020,9(19):2000872. doi: 10.1002/adhm.202000872
    [61] LEE K H, ZHANG Y, JIANG Q, et al. Alshareef, ultrasound-driven two-dimensional Ti3C2Tx MXene hydrogel generator[J]. ACS Nano,2020,14(3):3199-3207. doi: 10.1021/acsnano.9b08462
  • 加载中
图(12)
计量
  • 文章访问数:  2180
  • HTML全文浏览量:  1011
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 录用日期:  2021-02-23
  • 网络出版日期:  2021-03-02
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回