留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电纺壳聚糖-聚乳酸复合神经导管的分子作用及其生物活性表征

杨强 郭静 刘树兴 孙范忱 陈双

杨强, 郭静, 刘树兴, 等. 电纺壳聚糖-聚乳酸复合神经导管的分子作用及其生物活性表征[J]. 复合材料学报, 2021, 38(6): 1950-1959. doi: 10.13801/j.cnki.fhclxb.20200921.001
引用本文: 杨强, 郭静, 刘树兴, 等. 电纺壳聚糖-聚乳酸复合神经导管的分子作用及其生物活性表征[J]. 复合材料学报, 2021, 38(6): 1950-1959. doi: 10.13801/j.cnki.fhclxb.20200921.001
YANG Qiang, GUO Jing, LIU Shuxing, et al. Molecular action and bioactivity characterization of electrospunchitosan-polylactic acid composite nerve conduit[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1950-1959. doi: 10.13801/j.cnki.fhclxb.20200921.001
Citation: YANG Qiang, GUO Jing, LIU Shuxing, et al. Molecular action and bioactivity characterization of electrospunchitosan-polylactic acid composite nerve conduit[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1950-1959. doi: 10.13801/j.cnki.fhclxb.20200921.001

电纺壳聚糖-聚乳酸复合神经导管的分子作用及其生物活性表征

doi: 10.13801/j.cnki.fhclxb.20200921.001
基金项目: 国家自然科学基金(51773024&51373027);辽宁省科技创新团队项目(LT2017017)
详细信息
    通讯作者:

    郭静,博士,教授,博士生导师,研究方向为高分子材料改性和纤维材料加工成型 E-mail:guojing8161@163.com

  • 中图分类号: R318.08;TB332

Molecular action and bioactivity characterization of electrospunchitosan-polylactic acid composite nerve conduit

  • 摘要: 以三氟乙酸(TFA)、二氯甲烷(DCM)的复合溶液为溶剂,壳聚糖(CS)及聚乳酸(PLA)为溶质制备CS-PLA纺丝液,采用静电纺丝与模板卷取法制备CS-PLA复合神经导管,探究了静电纺CS-PLA复合材料的综合性能。通过表征复合材料的结构与性能,分析了CS与PLA体系内的分子作用,进一步通过复合神经导管与雪旺细胞的共培养实验,提出并验证了雪旺细胞在导管内壁生长黏附时的最佳体系组分。结果表明:复合材料中CS与PLA分子间以氢键结合,其中各种氢键贡献作用大小依次是OH…OH型>OH…N型>OH…醚O型。PLA含量增加,复合材料的热性能和热稳定性提高,断裂强度提升197.7%,断裂伸长率提高53.7%。CS含量增加,复合材料的亲水性和细胞相容性逐渐增加。在组分比例CS∶PLA(3∶1)时,凹槽及微孔的大小最有利于雪旺细胞的黏附。

     

  • 图  1  壳聚糖(CS)-聚乳酸(PLA)复合神经导管的制备过程

    Figure  1.  Preparation of chitosan (CS)-polylactic acid (PLA) composite nerve conduit

    图  2  CS、PLA及CS-PLA复合材料的FTIR图谱 (a)、不同比例的CS-PLA复合材料吸光度对比图 (b)

    Figure  2.  FTIR spectra of CS, PLA and CS-PLA composites (a), comparison diagram of absorbance of CS-PLA composites in different ratios (b)

    图  3  CS-PLA 复合材料的高斯分峰拟合及各子峰的分布

    Figure  3.  Gaussian peak fitting of CS-PLA composites and distribution of each subpeak ((a) CS∶PLA (2∶1); (b) CS∶PLA (3∶1); (c) CS∶PLA (4∶1))

    图  4  CS与PLA氢键作用过程

    Figure  4.  Mechanism of hydrogen bonding between CS and PLA

    图  5  CS、PLA及各组分CS-PLA复合材料的DTG (a) 与TG (b) 曲线

    Figure  5.  TGA curves (a) and DTG curves (b) of CS, PLA and CS-PLA composites

    图  6  CS、PLA及CS-PLA复合神经导管的DSC升温曲线

    Figure  6.  DSC heating curves of CS, PLA and CS-PLA composite nerve conduit

    图  7  CS及CS-PLA复合材料的H2O迁移示意图

    Figure  7.  H2O migration diagram of crystallization of CS-PLA composites

    图  8  CS、PLA(a)及CS-PLA复合材料(b)的XRD图谱

    Figure  8.  XRD patterns of CS, PLA (a) and CS-PLA composites (b)

    图  9  CS-PLA复合神经导管内壁的SEM图像

    Figure  9.  SEM images of the inner wall of CS-PLA composite nerve conduit((a) CS∶PLA (4∶1); (b) CS∶PLA (3∶1); (c) CS∶PLA (2∶1))

    图  10  CS-PLA复合材料的接触角测试图

    Figure  10.  Contact angle test pictures of CS-PLA composites ((a) CS∶PLA (2∶1); (b) CS∶PLA (3∶1); (c)CS∶PLA (4∶1))

    图  11  CS-PLA复合神经导管体外细胞培养的SEM图像

    Figure  11.  SEM images of in vitro cell culture of CS-PLA composite nerve conduit ((a) CS∶PLA (2∶1); (b) CS∶PLA (3∶1); (c)CS∶PLA (4∶1))

    表  1  各种氢键类型的拟合结果

    Table  1.   Fitting results of various kinds of hydrogen bonds

    Mass ratioHydrogen
    bond type
    AbbreviationWavenumber/
    cm−1
    Relative
    strength/%
    Total relative
    strength/%
    CS∶PLA
    (2∶1)
    Free hydroxyl V —OH 3563 14.0 14.0
    Intramolecular
    hydrogen bond
    OH…OH 3405 35.9 70.3
    I Annular polymer 3126 2.7
    IV OH…N 3516 31.7
    Intermolecular
    hydrogen bond
    II OH…ether O 3250 15.7 15.7
    CS∶PLA
    (3∶1)
    Free hydroxyl V —OH 3593 10.7 10.7
    Intramolecular
    hydrogen bond
    OH…OH 3403 42.8 72.0
    I Annular polymer 3112 1.9
    IV OH…N 3502 27.3
    Intermolecular
    hydrogen bond
    II OH…ether O 3244 17.3 17.3
    CS∶PLA
    (4∶1)
    Free hydroxyl V —OH 3558 7.6 7.6
    Intramolecular
    hydrogen bond
    OH…OH 3405 38.1 74.5
    I Annular polymer 3132 2.7
    IV OH…N 3508 33.7
    Intermolecular
    hydrogen bond
    II OH…ether O 3259 17.9 17.9
    下载: 导出CSV

    表  2  CS-PLA复合材料的断裂强度和断裂伸长率

    Table  2.   Tensile strength and breaking elongation of CS-PLA composites

    CS∶PLA
    (Mass ratio)
    Tensile strength/MPaBreaking elongation/%
    4∶1 0.351 9.09
    3∶1 0.585 10.91
    2∶1 1.045 13.79
    下载: 导出CSV
  • [1] 林彦杰, 高宝云, 李勇峰. 组织工程材料在周围神经损伤修复中应用的研究进展[J]. 中国医学工程, 2018, 26(1):20-22.

    LIN Yanjie, GAO Baoyun, LI Yongfeng. Research progress of tissue engineering materials in the repair of peripheral nerve injury[J]. China Medical Engineering,2018,26(1):20-22(in Chinese).
    [2] LÓPEZ-CEBRAL R, SILVA-CORREIA J, REIS R L, et al. Peripheral nerve injury: Current challenges, conventional treatment approaches, and new trends in biomaterials-based regenerative strategies[J]. ACS Biomaterials Science & Engineering,2017,3(12):3098-3122.
    [3] ABALYMOV A, PARAKHONSKIY B, SKIRTACH A G. Polymer- and hybrid-based biomaterials for interstitial, connective, vascular, nerve, visceral and musculoskeletal tissue engineering[J]. Polymers (Basel),2020,12(3):620.
    [4] BADEA S, WU W. Nanoengineered biomaterials for bridging gaps in damaged nerve tissue[J]. Nanoengineered Biomaterials for Regenerative Medicine,2019:187-214.
    [5] JAHROMI M, RAZAVI S, BAKHTIARI A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays[J]. Journal of Tissue Engineering and Regenerative,2019,13(11):2077-2100.
    [6] 张会兰, 易兵成, 王先流, 等. 用高度取向石墨烯/聚乳酸(Gr/PLLA)复合超细纤维构建神经导管[J]. 高等学校化学学报, 2016, 37(5):972-982.

    ZHANG Huilan, YI Bingcheng, WANG Xianliu, et al. Constructing neural catheters with highly oriented graphene/polylactic acid (Gr/PLLA) composite ultrafine fibers[J]. Chemical Journal of Chinese Universities,2016,37(5):972-982(in Chinese).
    [7] PHILIBERT T, LEE B H, FABIEN N. Current status and new perspectives on chitin and chitosan as functional biopolymers[J]. Appl Biochem Biotechnol,2017,181(4):1314-1337.
    [8] 李高荣, 欧阳茜茜, 李思东, 等. 壳聚糖纳米粒子的制备及其在医药领域的应用[J]. 药学研究, 2018, 37(1):53-56.

    LI Gaorong, OUYANG Qianqian, LI Sidong, et al. Preparation of chitosan nanoparticles and their application in the field of medicine[J]. Pharmaceutical Research,2018,37(1):53-56(in Chinese).
    [9] 陈潇, 张浩宇, 霍神焕, 等. 壳聚糖改性地聚合物的力学及吸附性能[J]. 复合材料学报, 2019, 36(12):2959-2967.

    CHEN Xiao, ZHANG Haoyu, HUO Shenhuan, et al. Mechanical and adsorption properties of chitosan-modified geopolymers[J]. Journal of Composite Materials,2019,36(12):2959-2967(in Chinese).
    [10] YE H, ZHU J, DENG D, et al. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration[J]. Journal of Biomaterials Science, Polymer Edition,2019,30(16):1505-1522.
    [11] 王栋, 宣丽慧, 李超, 等. 静电纺纤维素纳米晶体/壳聚糖-聚乙烯醇复合纳米纤维的制备与表征[J]. 复合材料学报, 2018, 35(4):964-972.

    WANG Dong, XUAN Lihui, LI Chao, et al. Preparation and characterization of electrospun cellulose nanocrystals/chitosan-polyvinyl alcohol composite nanofibers[J]. Acta Materiae Compositae Sinica,2018,35(4):964-972(in Chinese).
    [12] 詹世平, 万泽韬, 王景昌, 等. 生物医用材料聚乳酸的合成及其改性研究进展[J]. 化工进展, 2020, 39(1):199-205.

    ZHAN Shiping, WAN Zetao, WANG Jingchang, et al. Progress in the synthesis and modification of biomedical materials polylactic acid[J]. Progress in Chemical Engineering,2020,39(1):199-205(in Chinese).
    [13] MISHRA R K, HA S K, VERMA K, et al. Recent progress in selected bio-nanomaterials and their engineering applications: An overview[J]. Journal of Science: Advanced Materials and Devices,2018,3(3):263-288.
    [14] 陈立红, 雷志敏, 王莉莉. 碱性成纤维细胞生长因子/壳聚糖/聚乳酸支架用于牙周组织再生工程的体外实验[J]. 中国组织工程研究, 2017, 21(26):4106-4112. doi: 10.3969/j.issn.2095-4344.2017.26.002

    CHEN Lihong, LEI Zhimin, WANG Lili. In vitro experiment of basic fibroblast growth factor/chitosan/polylactic acid scaffold for periodontal tissue regeneration engineer-ing[J]. China Tissue Engineering Research,2017,21(26):4106-4112(in Chinese). doi: 10.3969/j.issn.2095-4344.2017.26.002
    [15] KASIRAJAN S, UMAPATHY D, CHANDRASEKAR C, et al. Preparation of poly(lactic acid) from Prosopis juliflora and incorporation of chitosan for packaging applications[J]. Journal of Bioscience and Bioengineering,2019,128(3):323-331.
    [16] SUN, F, GUO, J, LIU, Y, et al. Preparation and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/pullulan-gelatin electrospun nanofibers with shell-core structure[J]. Biomedical Materials,2020,15(4):045023.
    [17] PARHAM S, KHARAZI A Z, BAKHSHESHI-RAD H R, et al. Electrospun nano-fibers for biomedical and tissue en-gineering applications: A comprehensive review[J]. Materials (Basel),2020,13(9):2153.
    [18] 蒋岩岩, 秦静雯, 王鸿博. 壳聚糖/聚乳酸复合纳米纤维的制备及抗菌性能研究[J]. 材料导报, 2012, 26(18):74-76, 80. doi: 10.3969/j.issn.1005-023X.2012.18.020

    JIANG Yanyan, QIN Jingwen, WANG Hongbo. Preparation and antibacterial properties of chitosan/polylactic acid composite nanofibers[J]. Materials Herald,2012,26(18):74-76, 80(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.18.020
    [19] AU H T, PHAM L N, VU T H T, et al. Fabrication of an antibacterial non-woven mat of a poly(lactic acid)/chitosan blend by electrospinning[J]. Macromolecular Research,2011,20(1):51-58.
    [20] NGUYEN T T T, CHUNG O H, PARK J S. Coaxial electrospun poly (lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity[J]. Carbohydrate Polymers,2011,86(4):1799-1806.
    [21] 王华林, 丁曼, 翟林峰, 等. 壳聚糖/聚乳酸复合纳米纤维的制备与表征[J]. 高分子材料科学与工程, 2013, 29(1):162-165.

    WANG Hualin, DING Man, ZHAI Linfeng, et al. Preparation and characterization of chitosan/polylactic acid composite nanofibers[J]. Polymer Materials Science and Engineering,2013,29(1):162-165(in Chinese).
    [22] XU J, ZHANG J, GAO W, et al. Preparation of chitosan/PLA blend micro/nanofibers by electrospinning[J]. Materials Letters,2009,63(8):658-660.
    [23] HU Y, WU X, JINRUI X. Self-assembled supramolecular hydrogels formed by biodegradable PLA/CS diblock copolymers and beta-cyclodextrin for controlled dual drug delivery[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions,2018,108:18-23.
    [24] 李婷, 刘君泰. Origin软件的高斯多峰拟合方法在物理化学实验中的应用[J]. 化工设计通讯, 2016, 42(5):157. doi: 10.3969/j.issn.1003-6490.2016.05.125

    LI Ting, LIU Juntai. Application of the Gaussian multi-peak fitting method of origin software in physical chemistry experiments[J]. Chemical Engineering Design Newsletter,2016,42(5):157(in Chinese). doi: 10.3969/j.issn.1003-6490.2016.05.125
    [25] CHEN J, GUO J, ZHAO M, et al. Hydrogen bonding in chitosan/Antarctic krill protein composite system: Study on construction and enhancement mechanism[J]. International Journal of Biological Macromolecules,2020:142, 513-520.
    [26] WANG Y, CHANG Y, YU L, et al. Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba)[J]. Carbohydr Polym,2013,92(1):90-97.
    [27] PAL A K, KATIYAR V. Thermal degradation behaviour of nanoamphiphilic chitosan dispersed poly (lactic acid) bionanocomposite films[J]. International Journal of Biological Macromolecules,2017,95:1267-1279.
    [28] 琚海燕, 但卫华, 但年华, 等. 壳聚糖/聚己内酯复合膜的微观形态与结构特征[J]. 复合材料学报, 2016, 33(9):2038-2044.

    JU Haiyan, DAN Weihua, DAN Nianhua, et al. Micromorphology and structural characteristics of chitosan/polycaprolactone composite membrane[J]. Acta Materiae Compositae Sinica,2016,33(9):2038-2044(in Chinese).
    [29] 雷雁洲, 王少伟, 吕秦牛, 等. 碳纤维/聚乳酸复合材料的结晶性能和流变特性[J]. 复合材料学报, 2018, 35(6):1402-1406.

    LEI Yanzhou, WANG Shaowei, LV Qinniu, et al. Crystallization and rheological properties of carbon fiber/polylactic acid composites[J]. Acta Materiae Compositae Sinica,2018,35(6):1402-1406(in Chinese).
    [30] JENKINS P M, LAUGHTER M R, LEE D J, et al. A nerve guidance conduit with topographical and biochemical cues: Potential application using human neural stem cells[J]. Nanoscale Research Letters,2015,10(1):972.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1155
  • HTML全文浏览量:  423
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 录用日期:  2020-09-04
  • 网络出版日期:  2020-09-21
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回