留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性复合凝胶球对Pb(Ⅱ)的吸附特性与机制

包炳钦 张军 宋卫锋 刘建国 冯嘉颖 胡志成

包炳钦, 张军, 宋卫锋, 等. 磁性复合凝胶球对Pb(Ⅱ)的吸附特性与机制[J]. 复合材料学报, 2021, 38(6): 1929-1938. doi: 10.13801/j.cnki.fhclxb.20200924.001
引用本文: 包炳钦, 张军, 宋卫锋, 等. 磁性复合凝胶球对Pb(Ⅱ)的吸附特性与机制[J]. 复合材料学报, 2021, 38(6): 1929-1938. doi: 10.13801/j.cnki.fhclxb.20200924.001
BAO Bingqin, ZHANG Jun, SONG Weifeng, et al. Adsorption characteristics and mechanism of Pb(Ⅱ) on magnetic composite gel spheres[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1929-1938. doi: 10.13801/j.cnki.fhclxb.20200924.001
Citation: BAO Bingqin, ZHANG Jun, SONG Weifeng, et al. Adsorption characteristics and mechanism of Pb(Ⅱ) on magnetic composite gel spheres[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1929-1938. doi: 10.13801/j.cnki.fhclxb.20200924.001

磁性复合凝胶球对Pb(Ⅱ)的吸附特性与机制

doi: 10.13801/j.cnki.fhclxb.20200924.001
基金项目: 广州市科技计划项目(201904020021);广东省科学院科技专项项目(2018GDASCX-0109)
详细信息
    通讯作者:

    宋卫锋,博士,教授,研究方向为水污染治理 E-mail:842663012@qq.com

  • 中图分类号: X52;X703;TQ424

Adsorption characteristics and mechanism of Pb(Ⅱ) on magnetic composite gel spheres

  • 摘要: 以海藻酸钠(SA)作为基体前驱材料,通过离子交联法包埋固化L-甲硫氨酸(L-met)和纳米Fe3O4形成磁性复合凝胶球SA@Fe3O4/L-met。实验探究了SA@Fe3O4/L-met在不同pH、投加量和初始离子浓度条件下对Pb(Ⅱ)吸附能力的影响。结果表明,在pH=5、投加量为0.5 g·L−1、初始浓度为20 mg·L−1时,SA@Fe3O4/L-met对Pb(Ⅱ)能达到较好的吸附效率,最大吸附量可达到328.02 mg·g−1,远大于Fe3O4@SA与SA的吸附量142.5 mg·g−1和152.8 mg·g−1。吸附动力学和热力学研究表明该吸附过程分别对准二级动力学方程和Langmuir方程的拟合程度更大,且反应过程是一个熵增吸热的过程。最后采用SEM、XPS、VSM等对SA@Fe3O4/L-met的结构与性能进行表征分析,发现SA@Fe3O4/L-met中的氨基和羧基通过配位反应与Pb(Ⅱ)结合,同时还存在着离子交换作用。经过5次解吸后SA@Fe3O4/L-met的吸附量仍能达到210.5 mg·g−1,是一种较理想的环保吸附剂。

     

  • 图  1  pH对海藻酸钠(SA)@Fe3O4/L-甲硫氨酸(L-met)吸附Pb(Ⅱ)的影响

    Figure  1.  Effect of pH on the adsorption capacity of Pb(Ⅱ) by the sodium alginate (SA)@Fe3O4/L-methionine (L-met)

    图  2  初始浓度对SA@Fe3O4/L-met吸附Pb(Ⅱ)的影响

    Figure  2.  Effect of initial concentration on the adsorption capacity of Pb(Ⅱ)by the SA@Fe3O4/L-met

    图  3  投加量对SA@Fe3O4/L-met吸附Pb(Ⅱ)的影响

    Figure  3.  Influence of dosage on the adsorption capacity of Pb(Ⅱ) by SA@Fe3O4/L-met

    图  4  不同初始浓度下时间对SA@Fe3O4/L-met吸附Pb(Ⅱ)的影响

    Figure  4.  Effect of time at different initial concentrations on the adsorption of Pb(Ⅱ) by SA@Fe3O4/L-met

    图  5  不同循环次数下SA@Fe3O4/L-met吸附量的变化

    Figure  5.  Changes in the adsorption capacity of SA@Fe3O4/L-met under different cycle times

    图  6  SA@Fe3O4/L-met的表面形貌 (a)、Fe (b) 和N (c) 的表面元素分布和EDS能谱 (d)

    Figure  6.  Surface morphology (a) of SA@Fe3O4/L-met, element distribution diagram of Fe (b) and N (c) and EDS spectrum (d)

    图  7  SA@Fe3O4/L-met凝胶球吸附Pb(Ⅱ)的XPS能谱

    Figure  7.  XPS spectra of SA@Fe3O4/L-met adsorption of Pb(Ⅱ)

    图  8  Fe3O4和SA@Fe3O4/L-met磁滞回线

    Figure  8.  Hysteresis loop of Fe3O4 and SA@Fe3O4/L-met

    图  9  SA@Fe3O4/L-met磁场固液分离现象

    Figure  9.  Magnetic field solid-liquid separation phenomenon of SA@Fe3O4/L-met

    表  1  SA@Fe3O4/L-met吸附Pb(Ⅱ)的准一级动力学与准二级动力学拟合

    Table  1.   Calculated kinetic parameters for adsorption of Pb(II) by the SA@Fe3O4/L-met

    Co/(mg·L−1)Pseudo-first-order kineticmodelPseudo-second-order kineticmodel
    Qe/(mg·g−1)k1R2Qe/(mg·g−1)k2R2
    50 95.116 0.04111 0.97535 94.6073 0.00281 0.99922
    100 161.851 0.02371 0.91516 164.8347 0.00194 0.99966
    200 325.131 0.02286 0.92226 323.8061 0.00129 0.99996
    Notes: Co—Initial concentration of Pb(Ⅱ); Qe—Adsorption capacity at adsorption equilibrium; k1, k2—Adsorption constant; R2—Goodness.
    下载: 导出CSV

    表  2  SA@Fe3O4/L-met吸附Pb(Ⅱ)的吸附等温线模型拟合

    Table  2.   Isotherm model constants and correlation for adsorption of Pb(II) by the SA@Fe3O4/L-met

    Temperature/℃LangmuirFreundich
    Qmax/(mg·g−1)kL/(L·mg−1)R2RLkF/(L·mg−1)nR2
    25 330.430 0.032810 0.99977 0.03685 115.329 4.857 0.82080
    35 333.011 0.042134 0.99982 0.02925 121.857 5.0457 0.83013
    45 337.240 0.049391 0.99983 0.02521 129.423 5.2625 0.81762
    55 342.271 0.057546 0.99986 0.02182 138.023 5.5236 0.81789
    Notes: Qmax—Maximum adsorption capacity; kL—Langmuir equilibrium constant; kF—Freundich equilibrium constant; n-Adsorption intensity characteristic constant; RL—Determine the adsorption properties.
    下载: 导出CSV

    表  3  SA@Fe3O4/L-met的吸附热力学参数

    Table  3.   Thermodynamic parameters for adsorption of Pb(II) by the SA@Fe3O4/L-met

    Temperature/℃kFG/(kJ·mol−1)H/(kJ·mol−1)S/(J·mol−1)
    25 115.329 −11.76210 4.8667 55.8043
    35 121.857 −12.29872 55.7319
    45 129.423 −12.85728 55.7015
    55 138.027 −13.43712 55.6541
    Notes: kF—Freundich equilibrium constant; ∆G—Gibbs Free Energy; ∆H—Adsorption enthalpy change; ∆S—Adsorption entropy change.
    下载: 导出CSV

    表  4  SA@Fe3O4/L-met吸附量与其他吸附材的吸附量比较

    Table  4.   Adsorption results of Pb(II) onto different absorbents by the SA@Fe3O4/L-met

    AdsorbentpHReaction time/hMaximum adsorption capacity/(mg·g−1)References
    Silica modified calcium alginate–xanthan gum hybrid bead 5 3.3 18.9 ZHANG S, et al[21]
    Iron-oxide modified sericite alginate beads 5 15 133.73 LALHMUNSIAMARADHESHYAM R,et al[22]
    Sodium alginate/graphene oxide aerogel 5.5 4 267.4 JIAO C,et al[23]
    Hydrocolloid liquid-core capsules 5.5 3 300 NUSSINOVITCH A, et al[24]
    SA@Fe3O4/L-met 5 0.5 328.02 This paper
    Carboxylated cellulose nanocrystal/sodium alginate hydrogel beads 5 2 338.98 HU Z, et al[19]
    Magnetic carboxyl-functionalized attapulgite/calcium alginate beads 5 2 471.20 ZOU M F,et al[25]
    下载: 导出CSV
  • [1] FENG J, YANG Z, ZENG G M, et al. The adsorption behavior and mechanism investigation of Pb(Ⅱ) removal by flocculation using microbial flocculant GA1[J]. Bioresour Technol,2013,148:414-421. doi: 10.1016/j.biortech.2013.09.011
    [2] PENG X L, XU F, ZHANG W Z, et al. Magnetic Fe3O4@ silica-xanthan gum composites for aqueous removal and recovery of Pb2+[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,443:27-36.
    [3] DAI W, WU P, LIU D, et al. Adsorption of polycyclic aromatic hydrocarbons from aqueous solution by organic montmorillonite sodium alginate nanocomposites[J]. Chemosphere,2020,251:126074. doi: 10.1016/j.chemosphere.2020.126074
    [4] CHEN J H, LI G P, LIU Q L, et al. Cr(Ⅲ) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(Ⅲ) ions[J]. Chemical Engineering Journal,2010,165(2):465-473. doi: 10.1016/j.cej.2010.09.034
    [5] MANDAL B, RAY S K. Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: Modeling and kinetics study for removal of synthetic dyes from water[J]. Carbohydrate Polymers,2013,98(1):257-269. doi: 10.1016/j.carbpol.2013.05.093
    [6] PAPAGEORGIOU S K, KATSAROS F K, FAVVAS E P, et al. Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes[J]. Water Research,2012,46(6):1858-1872. doi: 10.1016/j.watres.2012.01.005
    [7] KHAN M, Lo I M C. A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives[J]. Water Research,2016,106:259-271. doi: 10.1016/j.watres.2016.10.008
    [8] THAKUR S, SHARMA B, VERMA A, et al. Recent progress in sodium alginate based sustainable hydrogels for environmental applications[J]. Journal of Cleaner Production,2018,198:143-159. doi: 10.1016/j.jclepro.2018.06.259
    [9] 张静进, 刘云国, 张薇, 等, 海藻酸钠包埋活性炭与细菌的条件优化及其对Pb2+的吸附特征研究[J].环境科学, 2010, 31(11): 2684-2690.

    ZHANG J J, LIU Y G, ZHANG W, et al. Study on the optimization of the conditions of sodium alginate embedding activated carbon and bacteria and its adsorption characteristics for Pb2+[J]. Environmental Science, 2010, 31(11): 2684-2690.
    [10] HE G, WANG C, CAO J, et al. Carboxymethyl chitosan-kaolinite composite hydrogel for efficient copper ions trapping[J]. Journal of Environmental Chemical Engineering,2019,7(2):102953. doi: 10.1016/j.jece.2019.102953
    [11] 江湛如, 汤媛媛, 李冰玉, 等. 磁性海藻酸铁介孔碳微球的合成及对水体中砷的去除[J]. 环境科学学报, 2018, 38(6):2382-2392.

    JIANG Z R, TANG Y Y, LI B Y, et al. Synthesis of magnetic alginate mesoporous carbon for the removal of As from water solution[J]. Environmental Science & Technology,2018,38(6):2382-2392(in Chinese).
    [12] CHU Y T, ZHU S D, XIA M Z, et al. Methionine-montmorillonite composite-A novel material for efficient adsorption of lead ions[J]. Advanced Powder Technology, 2020, 31: 708-717.
    [13] YAHAYA Y A, MAT DON M, BHATIA S. Biosorption of copper (Ⅱ) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies[J]. Journal of Hazardous Materials,2009,161(1):189-195. doi: 10.1016/j.jhazmat.2008.03.104
    [14] 于长江, 王苗. 董心雨, 等. 海藻酸钙@Fe3O4/生物碳磁性复合材料的制备及其对Co(Ⅱ)的吸附性能和机制[J]. 复合材料学报, 2018, 35(6):1549-1557.

    YU C J, WANG M, DONG X Y, et al. Preparation and characterization of calcium alginate@Fe3O4/biochar magnetic microsphere and its adsorption characteristics and mechanism for Co(Ⅱ)[J]. Acta Materiae Compositae Sinica,2018,35(6):1549-1557(in Chinese).
    [15] JIANG H B, YANG Y R, LIN Z K, et al. Preparation of a novel bio-adsorbent of sodium alginate grafted polyacrylamide/graphene oxide hydrogel for the adsorption of heavy metal ion[J]. Science of The Total Environment,2020,744:140653. doi: 10.1016/j.scitotenv.2020.140653
    [16] VERMA R, ASTHANA A, SINGH A K, et al. Novel glycine-functionalized magnetic nanoparticles entrapped calcium alginate beads for effective removal of lead[J]. Microchemical Journal,2017,130:168-178. doi: 10.1016/j.microc.2016.08.006
    [17] VARAPRASAD K, NÙÑEZ D, IDE W, et al. Development of high alginate comprised hydrogels for removal of Pb(Ⅱ) ions[J]. Journal of Molecular Liquids,2020,298:112087. doi: 10.1016/j.molliq.2019.112087
    [18] LI S S, SONG Y L, YANG H R, et al. Modifying alginate beads using polycarboxyl component for enhanced metal ions removal[J]. International Journal of Biological Macromolecules,2020,158:493-501. doi: 10.1016/j.ijbiomac.2020.05.038
    [19] HU Z, OMER A M, OUYANG X K, et al. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(Ⅱ) from aqueous solution[J]. International Journal of Biological Macromolecules, 2018, 108: 149-157.
    [20] BÉE A, TALBOT D, ABRAMSON S, et al. Magnetic alginate beads for Pb(Ⅱ) ions removal from wastewater[J]. Journal of Colloid and Interface Science, 2011, 362(2): 486-492.
    [21] ZHANG S, XU F, WANG Y, et al. Silica modified calcium alginate–xanthan gum hybrid bead composites for the removal and recovery of Pb(Ⅱ) from aqueous solution[J]. Chemical Engineering Journal, 2013, 234: 33-42.
    [22] LALHMUNSIAMARADHESHYAM R, PAWAR R R, HONG S M, et al. Iron-oxide modified sericite alginate beads: A sustainable adsorbent for the removal of As(V) and Pb(Ⅱ) from aqueoussolutions[J]. Journal of Molecular Liquids,2017,240(8):497-503.
    [23] JIAO C L, XIONG J Q, TAO J, et al. Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study[J]. International Journal of Biological Macromolecules,2016,83:133-141. doi: 10.1016/j.ijbiomac.2015.11.061
    [24] NUSSINOVITCH A , GERSHON Z , NUSSINOVITCH M. Hydrocolloid liquid-core capsules[J]. Food Hydrocolloids, 2015, 299: 122-131.
    [25] ZOU M F, CHEN X Y, LIN X J, et al. Magnetic carboxyl-functionalized attapulgite/calcium alginate beads[J]. International Journal of Biological Macromolecules,2018,120(A):789-800.
    [26] 孙俊芝, 王静霞, 倪茂君, 等. 改性海藻酸钠微球对Pb2+吸附性能的研究[J]. 环境科学与技术, 2019, 42(7): 100-104.

    SUN J Z,WANG J X,NI M J,et al.Studies on Adsorption properties of Pb2+ by modified sodium alginate microspheres[J]. Environmental Science & Technology, 2019, 42(7): 100-104(in Chinese).
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  982
  • HTML全文浏览量:  357
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30
  • 录用日期:  2020-09-09
  • 网络出版日期:  2020-09-24
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回