留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛竹工艺纤维高温饱和蒸汽-机械分离及其物理力学特性

王新洲 袁朱润 黄雅茜 李延军 李永成 许斌

王新洲, 袁朱润, 黄雅茜, 等. 毛竹工艺纤维高温饱和蒸汽-机械分离及其物理力学特性[J]. 复合材料学报, 2021, 38(6): 1905-1913. doi: 10.13801/j.cnki.fhclxb.20200923.002
引用本文: 王新洲, 袁朱润, 黄雅茜, 等. 毛竹工艺纤维高温饱和蒸汽-机械分离及其物理力学特性[J]. 复合材料学报, 2021, 38(6): 1905-1913. doi: 10.13801/j.cnki.fhclxb.20200923.002
WANG Xinzhou, YUAN Zhurun, HUANG Yaqian, et al. Physical and mechanical properties of bamboo fibers extracted by high-temperature saturated steam and mechanical treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1905-1913. doi: 10.13801/j.cnki.fhclxb.20200923.002
Citation: WANG Xinzhou, YUAN Zhurun, HUANG Yaqian, et al. Physical and mechanical properties of bamboo fibers extracted by high-temperature saturated steam and mechanical treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1905-1913. doi: 10.13801/j.cnki.fhclxb.20200923.002

毛竹工艺纤维高温饱和蒸汽-机械分离及其物理力学特性

doi: 10.13801/j.cnki.fhclxb.20200923.002
基金项目: 国家自然科学基金(31901374);江苏省自然科学基金青年项目(BK20180774);“十三五”国家重点研发计划(2017YFD0600801)
详细信息
    通讯作者:

    许斌,博士,副教授,研究方向为竹材加工利用 E-mail:xr9621@njfu.com.cn

  • 中图分类号: TS959.2;TQ340.1

Physical and mechanical properties of bamboo fibers extracted by high-temperature saturated steam and mechanical treatment

  • 摘要: 采用高温饱和蒸汽对高含水率新鲜毛竹竹材进行热处理,再通过辊轧制备竹材工艺纤维(由多根纤维组成),并运用光学显微、纳米压痕(NI)等分析技术研究了提取的工艺纤维的微观结构、化学组分、力学性能及吸湿特性。研究结果表明:高温饱和蒸汽处理可使细胞壁中半纤维发生降解,薄壁细胞由于壁薄更易受到破坏,在机械外力下薄壁细胞和维管束成功分离。纤维细胞壁中无定形物质的降解,木质素相对含量的增加及纤维素相对结晶度(CrI)的提高,改善了竹材工艺纤维的吸湿性能和细胞壁力学性能。经过饱和蒸汽处理后,纤维细胞壁的弹性模量(Er)和硬度分别增加了14.7%~29.4%和14.9%~38.5%。饱和蒸汽处理未对工艺纤维的拉伸性能产生明显影响,分离出的竹材工艺纤维最大拉伸强度和模量分别达到了765 MPa和24.8 GPa。另外,在不同部位处提取的工艺纤维在性能上存在一定差异:外侧区域分离的工艺纤维尺寸大于内侧;而竹间分离的工艺纤维拉伸性能优于竹节处的,因此在实际应用中可考虑分层提取、分级利用。

     

  • 图  1  毛竹工艺纤维制备示意图

    Figure  1.  Schematic diagram showing the extraction of fibers from bamboo culms

    图  2  细胞壁压痕测试

    Figure  2.  Nanoindentation on fiber cell walls

    图  3  毛竹工艺纤维截面形态

    Figure  3.  Cross-section morphology of bamboo fibers

    图  4  毛竹工艺纤维横截面面积

    Figure  4.  Cross-section area of bamboo fibers

    图  5  毛竹工艺纤维主要化学成分

    Figure  5.  Major chemical composition of bamboo fibers

    图  6  毛竹工艺纤维晶体结构

    Figure  6.  Crystal structure of bamboo fibers

    I002—Maximum intensity of plane diffraction peak of (002); Iam—Minimal diffraction intensity near 2θ=18°

    图  7  不同湿度(RH)环境下毛竹工艺纤维吸湿性能

    Figure  7.  Hygroscopic properties of bamboo fibers under different relative humidity (RH)

    图  8  毛竹纤维细胞壁弹性模量和硬度

    Figure  8.  Reduced elastic modulus and hardness of fiber cell walls

    图  9  毛竹工艺纤维拉伸性能

    Figure  9.  Tensile properties of bamboo fibers

  • [1] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1388.

    XING Liying, BAO Jianwen, LI Chongming, et al. Development status and challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1388(in Chinese).
    [2] 郑兴伟, 卢佳, 庄欣, 等. 航空用玻璃纤维铝合金层板成形技术研究进展[J]. 材料导报, 2018, 32(S2):413-418.

    ZHENG Xingwei, LU Jia, ZHUANG Xin, et al. A review on the forming technology of aerospace glass-reinforced aluminum laminates[J]. Materials Guide,2018,32(S2):413-418(in Chinese).
    [3] 周爱萍, 黄东升, 车慎思, 等. 竹材维管束分布及其抗拉力学性能[J]. 建筑材料学报, 2012, 15(5):730-734. doi: 10.3969/j.issn.1007-9629.2012.05.028

    ZHOU Aiping, HUANG Dongsheng, CHE Shensi, et al. Distribution of vascular bundles of bamboo and its tensile mechanical performances[J]. Journal of Building Materials,2012,15(5):730-734(in Chinese). doi: 10.3969/j.issn.1007-9629.2012.05.028
    [4] AMADA S, SUN U. Fracture properties of bamboo[J]. Composites Part B: Engineering,2001,32:451-459. doi: 10.1016/S1359-8368(01)00022-1
    [5] 费本华, 漆良华. 实施我国国家竹材储备战略计划的思考[J]. 世界林业研究, 2020, 33(3):38-42.

    FEI Benhua, QI Lianghua. Thoughts on the strategic planning of implementing national bamboo reserve[J]. World Forestry Research,2020,33(3):38-42(in Chinese).
    [6] JAAFAR J, SIREGAR J P, SALLEH S M, et al. Important considerations in manufacturing of natural fiber composites: A review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6(3): 647-664.
    [7] 唐启恒, 任一萍, 王戈, 等. 三聚氰胺聚磷酸盐对竹纤维/聚丙烯复合材料力学及阻燃性能的影响[J]. 复合材料学报, 2020, 37(3):553-561.

    TANG Qiheng, REN Yiping, WANG Ge, et al. Effects of melamine pyrophosphate on mechanical and flame retardant properties of bamboo fiber/polypropylene compo-sites[J]. Acta composite materials,2020,37(3):553-561(in Chinese).
    [8] KIM Hyojin, KAZUYA Okubo, TORU Fujii, et al. Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber[J]. Journal of Adhesion Science & Technology, 2013, 27(12): 1348-1358.
    [9] 张蔚, 李文彬, 姚文斌. 天然长竹纤维的分离机理及其制备方法初探[J]. 北京林业大学学报, 2007, 29(4):63-66. doi: 10.3321/j.issn:1000-1522.2007.04.015

    ZHANG Wei, LI Wenbin, YAO Wenbin. Separating mechanism and preparation method of the longer natural bamboo fiber[J]. Journal of Beijing Forestry University,2007,29(4):63-66(in Chinese). doi: 10.3321/j.issn:1000-1522.2007.04.015
    [10] DESHPANDE A P, BHASKAR R M, LAKSHMANA R C. Extraction of bamboo fibers and their use as reinforcement in polymeric composites[J]. Journal of Applied Polymer Science, 2015, 76(1): 83-92.
    [11] MOUSSA M, HAGE RE, SONNIER R, et al. Toward the cottonization of hemp fibers by steam explosion. Flame-retardant fibers[J]. Industrial Crops and Products, 2020, 151: 112242.
    [12] 罗海, 岳磊, 王乃雯, 等. 蒸汽爆破处理对竹纤维的影响[J]. 林业科技开发, 2014, 28(2):45-48.

    LUO Hai, YUE Lei, WANG Naiwen, et al. Research on separation and preparation of bamboo fibers by steam explosion treatment[J]. Forestry Science and Technology Development,2014,28(2):45-48(in Chinese).
    [13] 张红漫, 郑荣平, 陈敬文, 等. NREL法测定木质纤维素原料组分的含量[J]. 分析试验室, 2010, 29(11):15-18. doi: 10.3969/j.issn.1000-0720.2010.11.004

    ZHANG Hongman, ZHENG Rongping, CHEN Jingwen, et al. Investigation on the determination of lignocellulosics components by NREL method[J]. Analytical laboratory,2010,29(11):15-18(in Chinese). doi: 10.3969/j.issn.1000-0720.2010.11.004
    [14] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Material Research, 1992, 7(6): 1564-1583.
    [15] American Society for Testing and Materials. Standard test method for tensile properties of single textile fibers: ASTM D3822—07[S]. West Conshohocken: ASTM International, 2007.
    [16] ZHAI S, LI D, PAN B, et al. Tensile strength of windmill palm (trachycarpus fortunei) fiber bundles and its structural implications[J]. Journal Material Science, 2012, 47(2): 949-959.
    [17] 尚莉莉, 孙正军, 江泽慧, 等. 毛竹维管束的截面形态及变异规律[J]. 林业科学, 2012, 48(12):16-21. doi: 10.11707/j.1001-7488.20121203

    SHANG Lili, SUN Zhengjun, JIANG Zehui, et al. Variation and morphology of vascular bundle in moso bamboo[J]. Forestry Science,2012,48(12):16-21(in Chinese). doi: 10.11707/j.1001-7488.20121203
    [18] 娄志超, 袁成龙, 李延军, 等. 饱和蒸汽热处理对竹束化学成分和结晶度的影响[J]. 林业工程学报, 2020, 5(2):29-35.

    LOU Zhichao, YUAN Chenglong, LI Yanjun, et al. Effect of saturated steam treatment on the chemical composition and crystallinity properties of bamboo bundles[J]. Acta Forestry Engineering,2020,5(2):29-35(in Chinese).
    [19] GONZÁLEZ-PEÑA M M, CURLING S F, HALE M D C. On theeffect of heat on the chemical composition and dimensions ofthermally-modified wood[J]. Polymer Degradation Stability, 2009, 94: 2184-2193.
    [20] WANG X, CHEN X, XIE X, et al. Effects of thermal modification on the physical, chemical and micromechanical properties of Masson pine wood (Pinus massoniana Lamb.)[J]. Holzforschung, 2018, 72(12): 1063-1070.
    [21] SEGAL L, CREELY L, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer[J]. Text Research Journal 1959, 29: 786-794.
    [22] YIN J, YUAN T, LU Y, et al. Effect of compression combined with steam treatment on the porosity, chemical composition and cellulose crystalline structure of wood cell walls[J]. Carbohydrate Polymer, 2017, 155: 163-172.
    [23] REPELLIN V, GUYONNET R. Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition[J]. Holzforschung, 2005, 59 (1): 28-34.
    [24] HILL C A S, NORTON A J, NEWMAN G. Analysis of the water vapour sorption behaviour of Sitka spruce [Picea sitchensis(Bongard) Carr. ] based on the parallel exponential kinetics model[J]. Holzforschung, 2010, 64: 469-473.
    [25] GINDL W, GUPTA H S. Lignification of spruce tracheids secondary cell wall related to longitudinal hardness and modulus of elasticity using nano-indentation[J]. Canadian Journal of Botany, 2002, 80: 1029-1033.
    [26] WANG X, DENG Y, WANG S, et al. Evaluation of the effects of compression combined with heat treatment by nanoindentation (NI) of poplar cell walls[J]. Holzforschung, 2014, 68: 167-173.
    [27] MENG Y, XIA Y, YOUNG T M, et al. Viscoelasticity of wood cell walls with different moisture content as measured by nanoindentation[J]. RSC Advances 2015, 5(59): 47538-47547.
    [28] 秦韶山, 殷丽萍, 李延军. 毛竹纤维细胞壁静态纵向纳米力学性能研究[J]. 热带农业工程, 2017, 41(Z1):57-61.

    QIN Shaoshan, YIN Liping, LI Yanjun. Longitudinal mechanical properties of bamboo cell wall determined by nanoindentation technique[J]. Tropical Agricultural Engineering,2017,41(Z1):57-61(in Chinese).
    [29] CHEN H, CHENG H, WANG G, et al. Tensile properties of bamboo in different sizes[J]. Journal of Wood Science, 2015, 61: 552-561.
    [30] SHANG L, SUN Z, LIU X, JIANG Z. A novel method for measuring mechanical properties of vascularbundles in moso bamboo[J]. Journal of Wood Science, 2015, 61: 562-568.
    [31] BAI Y, YAN Z, OZBAKKALOGLU T, et al. Quasi-static and dynamic tensile properties of large-rupture-strain (LRS) polyethylene terephthalate fiber bundle[J]. Construction Building and Materials, 2020, 232: 117241.
    [32] BALEY C, GOMINA M, BREARD J, et al. Variability of mechanical properties of flax fibres for composite reinforcement. A review[J]. Industrial Crops and Products, 2019, 145: 111984.
    [33] 丁雨龙, LIESE W. 竹节解剖构造的研究[J]. 竹子研究汇刊, 1995(1):24-32.

    DING Y L, LIESE W. Anatomical structure of bamboo[J]. Bamboo Research Journal,1995(1):24-32(in Chinese).
  • 加载中
图(9)
计量
  • 文章访问数:  1086
  • HTML全文浏览量:  476
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-27
  • 录用日期:  2020-09-19
  • 网络出版日期:  2020-09-23
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回