留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型

赵秋红 董硕 朱涵

赵秋红, 董硕, 朱涵. 钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型[J]. 复合材料学报, 2021, 38(7): 2359-2369. doi: 10.13801/j.cnki.fhclxb.20200916.001
引用本文: 赵秋红, 董硕, 朱涵. 钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型[J]. 复合材料学报, 2021, 38(7): 2359-2369. doi: 10.13801/j.cnki.fhclxb.20200916.001
ZHAO Qiuhong, DONG Shuo, ZHU Han. Experiment on stress-strain behavior and constitutive model of steel fiber-rubber/ concrete subjected to uniaxial compression[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2359-2369. doi: 10.13801/j.cnki.fhclxb.20200916.001
Citation: ZHAO Qiuhong, DONG Shuo, ZHU Han. Experiment on stress-strain behavior and constitutive model of steel fiber-rubber/ concrete subjected to uniaxial compression[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2359-2369. doi: 10.13801/j.cnki.fhclxb.20200916.001

钢纤维-橡胶/混凝土单轴受压全曲线试验及本构模型

doi: 10.13801/j.cnki.fhclxb.20200916.001
基金项目: 国家自然科学基金(51678406;51878447;51378340);天津市研究生科研创新项目(2019YJSB162)
详细信息
    通讯作者:

    赵秋红,博士,教授,博士生导师,研究方向为高层抗震、桥梁抗震、高性能结构及材料 E-mail:qzhao@tju.edu.cn

  • 中图分类号: TB332

Experiment on stress-strain behavior and constitutive model of steel fiber-rubber/ concrete subjected to uniaxial compression

  • 摘要: 将钢纤维(SF)掺入橡胶混凝土中,能够改善由于橡胶颗粒掺入导致的强度降低,并进一步增加延性。为研究SF-橡胶/混凝土的抗压性能,配制得到SF体积分数分别为0vol%、0.5vol%、1.0vol%和1.5vol%及橡胶颗粒等体积替换砂率为0%、10%和20%的10组SF-橡胶/混凝土试件,并进行单轴受压全曲线试验。结果表明:SF的桥联作用及其与橡胶颗粒的协同作用可改善混凝土的抗压性能,试件破坏呈明显延性特征。随SF掺量的增加,SF-橡胶/混凝土试件的抗压强度及弹性模量均明显增大,其相应峰值应力的应变及全曲线峰值后延性也相应增加;随橡胶颗粒掺量的增加,SF-橡胶/混凝土试件相应峰值应力的应变及全曲线峰值后延性增加,而抗压强度及弹性模量有所减小。在已有研究基础上,通过曲线拟合试验数据,提出适用于SF-橡胶/混凝土的单轴受压应力-应变全曲线数学表达式,模型与试验结果吻合较好,为此类混凝土的结构分析设计提供了理论基础。

     

  • 图  1  单轴受压应力-应变全曲线试验加载装置

    Figure  1.  Test setup of uniaxial compressive stress-strain curves

    图  2  钢纤维(SF)-橡胶/混凝土试件受压破坏过程示意图

    Figure  2.  Schematic diagrams of compressive process of steel fiber (SF)-rubber/concrete specimens

    图  3  SF-橡胶/混凝土试件的受压破坏形态

    Figure  3.  Compressive failure modes of SF-rubber/concrete specimens

    图  4  SF-橡胶/混凝土试件单轴受压应力-应变全曲线

    Figure  4.  Uniaxial compressive stress-strain curves of SF-rubber/concrete specimens

    图  5  PC、橡胶/混凝土、SF/混凝土试件单轴受压应力-应变曲线理论模型与试验曲线比较

    Figure  5.  Comparison between theoretical and experimental curves of PC, rubber/concrete, SF/concrete specimens

    图  6  SF-橡胶/混凝土形状参数${\alpha _{\rm{c}}}$拟合效果对比

    Figure  6.  Comparison of shape parameters ${\alpha _{\rm{c}}}$ between experimental and predicted results of SF-rubber/concrete

    图  7  SF-橡胶/混凝土单轴受压应力-应变曲线理论模型与试验曲线对比

    Figure  7.  Comparison between theoretical and experimental uniaxial compressive stress-strain curves of SF-rubber/concrete

    表  1  试验混凝土配比

    Table  1.   Mixture proportions of test concretes

    TypeSpecimen
    denotation
    Water-binder
    mass ratio
    Volume fraction of steel
    fiber/vol%
    Volume substitution
    ratio of rubber
    particles/%
    Water/
    kg
    Cement/
    kg
    Fine aggregate/
    kg
    Coarse aggregate/
    kg
    Mass fraction
    of super
    plasticizer/
    wt%
    PC R-0-F-0.0 0.34 0 0 160 470 820 960 1
    Rubber/
    concrete
    R-10-F-0.0 0.34 0 10 160 470 738 960 1
    R-20-F-0.0 0.34 0 20 160 470 656 960 1
    SF/
    concrete
    R-0-F-0.5 0.34 0.5 0 160 470 820 960 1
    R-0-F-1.0 0.34 1.0 0 160 470 820 960 1
    R-0-F-1.5 0.34 1.5 0 160 470 820 960 1
    SF-rubber/
    concrete
    R-10-F-0.5 0.34 0.5 10 160 470 738 960 1
    R-10-F-1.0 0.34 1.0 10 160 470 738 960 1
    R-10-F-1.5 0.34 1.5 10 160 470 738 960 1
    R-20-F-1.0 0.34 1.0 20 160 470 656 960 1
    Notes: PC—Plain concrete; SF—Steel fiber; R—Rubber particles; R-0, R-10, R-20—Rubber volume substitution ratios of 0%, 10% and 20%, respectively; F—Steel fiber; F-0.0, F-0.5, F-1.0, F-1.5—Steel fiber volume fractions of 0vol%, 0.5vol%, 1.0vol% and 1.5vol%, respectively.
    下载: 导出CSV

    表  2  SF-橡胶/混凝土试件单轴受压试验及计算结果

    Table  2.   Uniaxial compressive tests and calculation results of SF-rubber/concrete specimens

    Specimen typeSpecimen
    denotation
    ${f_{{\rm{cu}}}}$/MPa${f_{{\rm{c,t}}}}$/MPa${f_{{\rm{c,c}}}}$/MPa$\dfrac{{{f_{{\rm{c,t}}}}}}{{{f_{{\rm{c,c}}}}}}$${\varepsilon _{{\rm{c,t}}}}$/10−3${\varepsilon _{{\rm{c,c}}}}$/10−3$\dfrac{{{\varepsilon _{{\rm{c,t}}}}}}{{{\varepsilon _{{\rm{c,c}}}}}}$${E_{{\rm{c,t}}}}$/104${E_{{\rm{c,c}}}}$/104$\dfrac{{{E_{{\rm{c,t}}}}}}{{{E_{{\rm{c,c}}}}}}$
    PC R-0-F-0.0 68.7 48.9 48.9 1.00 1.95 1.90 1.02 3.81 3.70 1.03
    Rubber/concrete R-10-F-0.0 58.5 41.3 40.4 1.02 2.11 2.11 1.00 3.36 3.39 0.99
    R-20-F-0.0 46.5 32.0 32.0 1.00 2.40 2.40 1.00 3.09 3.03 1.02
    SF/concrete R-0-F-0.5 72.1 51.1 51.0 1.00 2.06 2.07 1.00 3.99 3.98 1.00
    R-0-F-1.0 74.7 53.1 53.1 1.00 2.25 2.23 1.00 4.25 4.26 1.00
    R-0-F-1.5 78.9 56.4 55.1 1.02 2.43 2.42 1.00 4.53 4.55 1.00
    SF-rubber/
    concrete
    R-10-F-0.5 60.2 42.7 42.5 1.00 2.31 2.26 1.02 3.55 3.65 0.97
    R-10-F-1.0 61.4 42.2 44.6 0.95 2.52 2.39 1.06 3.82 3.91 0.98
    R-10-F-1.5 65.7 46.1 46.7 0.99 2.60 2.59 1.00 4.17 4.21 0.99
    R-20-F-1.0 48.9 34.1 36.1 0.94 2.73 2.70 1.01 3.70 3.53 1.05
    Notes: ${f_{{\rm{cu}}}}$—Cube compressive strength; ${f_{{\rm{c,t}}}}$—Experimental axial compressive strength; ${f_{{\rm{c,c}}}}$—Calculated axial compressive strength; ${\varepsilon _{{\rm{c,t}}}}$—Experimental strain at peak stress point; ${\varepsilon _{{\rm{c,c}}}}$—Calculated strain at peak stress point; ${E_{{\rm{c,t}}}}$—Experimental elastic modulus; ${E_{{\rm{c,c}}}}$—Calculated elastic modulus.
    下载: 导出CSV

    表  3  国内外常用普通混凝土(PC)、橡胶/混凝土和SF/混凝土受压应力-应变曲线模型

    Table  3.   Theoretical stress-strain models of plain concrete (PC), rubber/concrete and SF/concrete under compression in literatures

    References${f_{\rm{c}}}$/MPaAdmixtureConstitutive models and parameter
    PC Carreia-Chu et al[8] $\sigma = \dfrac{{{f_{\rm{c}}}\beta (\varepsilon/{\varepsilon _{\rm{c}}})}}{{\beta - 1 + {{(\varepsilon/{\varepsilon _{\rm{c}}})}^\beta }}}$; $\beta = {\left( {\dfrac{{{f_{\rm{c}}}}}{{32.4}}} \right)^3} + 1.55$; ${\varepsilon _{\rm{c}}} = 700{({f_{\rm{c}}})^{0.25}} \times {10^{ - 6}}$
    Guo[9] $x = \dfrac{\varepsilon }{{{\varepsilon _{\rm{c}}}}}$; $y = \dfrac{\sigma }{{{f_{\rm{c}}}}}$;

    $y = \left\{ \begin{array}{l} ax + (3 - 2a){x^2} + (a - 2){x^3}\mathop {}\limits_{} (0 < x \leqslant 1) \\ \dfrac{x}{{b{{(x - 1)}^2} + x}}\mathop {}\limits_{} (x > 1) \\\end{array} \right.$
    $a = 2.4 - 0.0125{f_{\rm{c}}};\;b = 0.157{f_{\rm{c}}}^{0.795} - 0.905$
    GB 50010—2010[10] $\sigma = (1 - {d_{\rm{c}}}){E_{\rm{c}}}\varepsilon $; ${d_{\rm{c}}} = \left\{ \begin{array}{l} 1 - \dfrac{{{\rho _{\rm{c}}}n}}{{n - 1 + {x^n}}}\mathop {}\nolimits_{} (\varepsilon \leqslant {\varepsilon _{\rm{c}}}) \\ 1 - \dfrac{{{\rho _{\rm{c}}}n}}{{{\alpha _{\rm{c}}}{{(x - 1)}^2} + x}}\mathop {}\nolimits_{} (\varepsilon > {\varepsilon _{\rm{c}}}) \\\end{array} \right.$;${\rho _{\rm{c}}} = \dfrac{{{f_{\rm{c}}}}}{{{E_{\rm{c}}}{\varepsilon _{\rm{c}}}}}$;

    $n = \dfrac{{{E_{\rm{c}}}{\varepsilon _{\rm{c}}}}}{{{E_{\rm{c}}}{\varepsilon _{\rm{c}}} - {f_{\rm{c}}}}}$; $x = \dfrac{\varepsilon }{{{\varepsilon _{\rm{c}}}}}$; ${\alpha _{\rm{c}}} = 0.157f_{\rm{c}}^{0.785} - 0.905$

    ${\varepsilon _{\rm{c}}} = 700 + 172\sqrt {{f_{\rm{c}}}} \times {10^{ - 6}}$
    Rubber/
    concrete
    Feng et al[16] 50–80 Amount: 0–37.8 kg∙m−3
    Size: 0.198–8 mm
    ${a_1} = 2.4 - 0.01{f_{{\rm{cu}}}}$;
    $a = {a_1}(1 - 0.0529{\rho _{\rm{r}}}d_{\rm{r}}^{ - 0.0347})$${a_2} = 0.132f_{{\rm{cu}}}^{0.785} - 0.905$;

    $b = {a_2}(1 + 0.046{\rho _{\rm{r}}}d_{\rm{r}}^{ - 0.135})$${f_{{\rm{c}},{\rm{r}}}} = {f_{\rm{c}}} \times {{\rm{e}}^{\left( {\frac{{ - 0.0251{\rho _{\rm{r}}}{d_{\rm{r}}}}}{{ - 0.1058 + {d_{\rm{r}}}}}} \right)}}$;
    ${\varepsilon _{{\rm{c}},{\rm{r}}}} = (3\;666.7 - 105.8\sqrt {{f_{{\rm{c}},{\rm{r}}}}} ) \times {10^6}$
    Li et al[17] 30–50 Amount: 0–50.92 kg∙m−3
    Size: 0.173–4 mm
    $a = (2.4 - 0.0125{f_{\rm{c}}}) \times \exp \left(0.107{\rm{ln}}{d_{\rm{r}}} + \dfrac{{0.006\rho _{\rm{r}}^{1.0169}{d_{\rm{r}}}}}{{{d_{\rm{r}}} - 0.1287}}\right)$;

    $b = (0.157{f_{\rm{c}}}^{0.785} - 0.905) \times \exp \left(0.0617{\rm{ln}}{d_{\rm{r}}} - \dfrac{{0.283\rho _{\rm{r}}^{0.3322}{d_{\rm{r}}}}}{{{d_{\rm{r}}} + 0.0018}}\right)$;

    ${f_{{\rm{c}},{\rm{r}}}} = {f_{\rm{c}}} \times \exp \left( {\dfrac{{ - 0.0734{\rho _{\rm{r}}}^{0.4947}{k^{ - 3.2634}}{d_{\rm{r}}}}}{{{d_{\rm{r}}} - 0.0737}}} \right)$;

    ${\varepsilon _{{\rm{c}},{\rm{r}}}} = (938.0584 + 158.1626\sqrt {{f_{{\rm{c}},{\rm{r}}}}} ) \times {10^6}$
    Li et al[18] 35–50 Amount: 0–40.5 kg∙m−3
    Size: 1.18 mm, 2.36 mm
    $\beta = \left\{ \begin{array}{l} {\left[ {1.02 - 1.17/({E_{\rm{p}}}/{E_{{\rm{c}},{\rm{r}}}})} \right]^{ - 0.74}}\mathop {}\nolimits_{} (\varepsilon \leqslant {\varepsilon _{{\rm{c}},{\rm{r}}}}) \\ {\left[ {1.02 - 1.17/({E_{\rm{p}}}/{E_{{\rm{c}},{\rm{r}}}})} \right]^{ - 0.74}} + (\gamma + \mu )\mathop {}\nolimits_{} (\varepsilon > {\varepsilon _{{\rm{c}},{\rm{r}}}}) \\ \end{array} \right.$

    $\gamma = {(135.16 - 0.1744{f_{{\rm{c}},{\rm{r}}}})^{ - 0.46}}$;

    $\mu = 0.35\exp ( - 9.11/{f_{{\rm{c}},{\rm{r}}}})$${E_{\rm{p}}} = {f_{{\rm{c}},{\rm{r}}}}/{\varepsilon _{{\rm{c}},{\rm{r}}}}$;

    ${\varepsilon _{{\rm{c}},{\rm{r}}}} = ({f_{{\rm{c}},{\rm{r}}}}/{E_{{\rm{c}},{\rm{r}}}})\left[ {\upsilon/(\upsilon - 1)} \right]$; $\upsilon = {f_{{\rm{c}},{\rm{r}}}}/17 + 0.8$;
    SF/concrete Nataraja[19] 30–50 Type: Corrugated ${l_{\rm{f}}}/{d_{\rm{f}}}$: 55, 82; ${V_{\rm{f}}}$: 0vol%, 0.5vol%, 0.75vol%, 1.0vol% $\beta = 0.5811 + 1.93\lambda _{\rm{f}}^{ - 0.7406}$${f_{{\rm{c}},{\rm{f}}}} = {f_{\rm{c}}} + 2.1604{\lambda _{\rm{f}}}$;${\varepsilon _{{\rm{c}},{\rm{f}}}} = {\varepsilon _{\rm{c}}} + 0.0006{\lambda _{\rm{f}}}$
    Gao[23] 20–30 Type: Shear-wave ${l_{\rm{f}}}/{d_{\rm{f}}}$: 46; ${V_{\rm{f}}}$: 0vol%, 0.5vol%, 1.5vol%, 2.0vol% $a = {E_{{\rm{c}},{\rm{f}}}}(1.3 + 0.014{f_{{\rm{c}},{\rm{f}}}} + 0.96{\lambda _{\rm{f}}})/{f_{{\rm{c}},{\rm{f}}}} \times {10^3}$$b = (1.4 + 0.012{f_{{\rm{c}},{\rm{f}}}}^{1.45})(1 - 0.8{\lambda _{\rm{f}}}^{0.295})$, $1.5 \leqslant a < 3.0$
    Zhang[24] 40–50
    Lv et al[25] 50–90 Type: Hooked-end ${l_{\rm{f}}}/{d_{\rm{f}}}$: 62.5; ${V_{\rm{f}}}$: 0vol%, 1.0vol%, 1.5vol%, 2.0vol% ${\alpha _{{\rm{c}},{\rm{f}}}} = (0.157f_{\rm{c}}^{0.785} - 0.905)\left[ {1 - 0.0192({l_{\rm{f}}}/{d_{\rm{f}}}){V_{\rm{f}}}^{0.08}} \right]$${\varepsilon _{{\rm{c}},{\rm{f}}}} = (700 + 172\sqrt {{f_{\rm{c}}}} )(1.0 + 0.189{\lambda _{\rm{f}}}) \times {10^{ - 6}}$${E_{ {\rm{c} },{\rm{f} } } } = \dfrac{ { { {10}^5} } }{ {2.2 + \left({ {34.7} }/{ { {f_{ {\rm{cu} },{\rm{k} } } } } }\right)} }(1 - 0.0006{\lambda _{\rm{f} } })$
    Notes: ${f_{\rm{c}}}$—Axial compressive strength of PC; ${\varepsilon _{\rm{c}}}$—strain at peak stress point of PC; ${\varepsilon _{\rm{u}}}$—Ultimate strain of PC; ${d_{\rm{c}}}$—Damage evolution parameters of PC; ${f_{{\rm{c}},{\rm{r}}}}$—Peak stress of Rubber/Concrete; ${\varepsilon _{{\rm{c}},{\rm{r}}}}$—Strain at peak stress point of Rubber/Concrete; $E{}_{{\rm{c}},{\rm{r}}}$—Elastic modulus of Rubber/Concrete;${f_{{\rm{c}},{\rm{f}}}}$—Peak stress of SF/Concrete; ${\varepsilon _{{\rm{c}},{\rm{f}}}}$—Strain at peak stress point of SF/Concrete; $E{}_{{\rm{c}},{\rm{f}}}$—Elastic modulus of SF/Concrete; Vf—Volume fraction of steel fiber; lf/df—Length to diameter ratio of SF.
    下载: 导出CSV
  • [1] TOUTANIJI H A. The use of rubber tire particles in concrete to replace mineral aggregates[J]. Cement & Concrete Composites,1996,18(2):135-139.
    [2] 刘日鑫, 侯文顺, 徐永红, 等. 废橡胶颗粒对混凝土力学性能的影响[J]. 建筑材料学报, 2009, 12(3):341-344. doi: 10.3969/j.issn.1007-9629.2009.03.020

    LIU Rixin, HOU Wenshun, XU Yonghong, et al. Effect of crumb rubber on the mechanical properties of concrete[J]. Journal of Building Materials,2009,12(3):341-344(in Chinese). doi: 10.3969/j.issn.1007-9629.2009.03.020
    [3] HAN Q H, YANG G, XU J, et al. Acoustic emission data analyses based on crumb rubber concrete beam bending tests[J]. Engineering Fracture Mechanics,2019,210:189-202. doi: 10.1016/j.engfracmech.2018.05.016
    [4] TURATSINZE A, GRANJU J L, BONNET S. Positive synergy between steel-fibres and rubber aggregates: Effect on the resistance of cement-based mortars to shrinkage cracking[J]. Cement & Concrete Research,2006,36(9):1692-1697.
    [5] NOAMAN A T, BAKAR B H A, AKIL H M. Experimental investigation on compression toughness of rubberized steel fibre concrete[J]. Construction and Building Materials,2016,115:163-170. doi: 10.1016/j.conbuildmat.2016.04.022
    [6] LI Y, LI Y Q. Experimental study on performance of rubber particle and steel fiber composite toughening concrete[J]. Construction and Building Materials,2017,146:267-275. doi: 10.1016/j.conbuildmat.2017.04.100
    [7] FU C Q, YE H L, WANG K J, et al. Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC)[J]. Composites Part B: Engineering,2019,160:158-166. doi: 10.1016/j.compositesb.2018.10.045
    [8] CARREIRA D J, CHU K. Stress-strain relationship for plain concrete in compression[J]. Journal of the American Concrete Institute,1985,82(6):797-804.
    [9] 过镇海. 混凝土的强度和本构关系: 原理与应用[M]. 北京: 中国建筑工业出版社, 2004.

    GUO Zhenhai. Strength and constitutive model of concrete: Principle and application[M]. Beijing: China Architecture & Building Press, 2004(in Chinese).
    [10] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB50010—2010[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB50010—2010[S]. Beijing: China Architecture & Building Press, 2011(in Chinese).
    [11] 朱涵, 刘春生, 张永明, 等. 橡胶集料掺量对混凝土压弯性能的影响[J]. 天津大学学报, 2007, 40(7):761-765.

    ZHU Han, LIU Chunsheng, ZHANG Yongming, et al. Effect of crumb rubber proportion on compressive and flexural behavior of concrete[J]. Journal of Tianjin University,2007,40(7):761-765(in Chinese).
    [12] 王婧一, 王立燕, 张亚梅. 弹性橡胶混凝土压、弯变形性能试验研究[J]. 混凝土与水泥制品, 2008(2):6-10.

    WANG Jingyi, WANG Liyan, ZHANG Yamei. Experimental study on deformation characteristic of elastic rubberized concrete under compressive and flexural loading[J]. China Concrete and Cement Products,2008(2):6-10(in Chinese).
    [13] 刘锋, 潘东平, 李丽娟, 等. 低强橡胶混凝土单轴受压本构关系的试验研究[J]. 建筑材料学报, 2007, 10(4):407-411. doi: 10.3969/j.issn.1007-9629.2007.04.006

    LIU Feng, PAN Dongping, LI Lijuan, et al. Experimental study on constitutive equation of crumb rubber concrete subject to uniaxial compression[J]. Journal of Building Materials,2007,10(4):407-411(in Chinese). doi: 10.3969/j.issn.1007-9629.2007.04.006
    [14] 杨敏. 废旧橡胶混凝土基本力学性能研究[D]. 沈阳: 沈阳大学, 2012.

    YANG Min. Research on basis mechanical performance of waste rubber concrete[D]. Shenyang: Shenyang University, 2012(in Chinese).
    [15] 赵秋红, 王菲, 朱涵. 结构用橡胶集料混凝土受压全曲线试验及其本构模型[J]. 复合材料学报, 2018, 35(8):2222-2234.

    ZHAO Qiuhong, WANG Fei, ZHU Han. Compression test on curves and constitutive model of crumb rubber concrete for structural purposes[J]. Acta Materiae Compositae Sinica,2018,35(8):2222-2234(in Chinese).
    [16] 冯文贤, 魏宜达, 李丽娟, 等. 高强橡胶混凝土单轴受压本构关系的试验研究[J]. 新型建筑材料, 2010, 37(2):12-15. doi: 10.3969/j.issn.1001-702X.2010.02.004

    FENG Wenxian, WEI Yida, LI Lijuan, et al. Experimental study on constitutive equation of high strength crumb rubber concrete to uniaxial compression[J]. New Building Materials,2010,37(2):12-15(in Chinese). doi: 10.3969/j.issn.1001-702X.2010.02.004
    [17] LI L J, RUAN S H, ZENG L. Mechanical properties and constitutive equations of concrete containing a low volume of tire rubber particles[J]. Construction and Building Materials,2014,70:291-308. doi: 10.1016/j.conbuildmat.2014.07.105
    [18] LI D D, ZHUGE Y, GRAVINA R, et al. Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab[J]. Construction and Building Materials,2018,166:745-759. doi: 10.1016/j.conbuildmat.2018.01.142
    [19] NATARAJA M C, DHANG N, GUPTA A P. Stress-strain curves for steel-fiber reinforced concrete under compression[J]. Cement & Concrete Composites,1999,21(5-6):383-390.
    [20] EZELDIN A S, BALAGURU P N. Normal-and high-strength fiber reinforced concrete under compression[J]. Journal of Materials in Civil Engineering,1992,4(4):415-429. doi: 10.1061/(ASCE)0899-1561(1992)4:4(415)
    [21] BARROS J A O, FIGUEIRAS J A. Flexural behavior of SFRC: Testing and modeling[J]. Journal of Materials in Civil Engineering,1999,11(4):331-339. doi: 10.1061/(ASCE)0899-1561(1999)11:4(331)
    [22] MANSUR M A, CHIN M S, WEE T H. Stress-strain relationship of high-strength fiber concrete in compression[J]. Journal of Materials in Civil Engineering,1999,11(1):21-29. doi: 10.1061/(ASCE)0899-1561(1999)11:1(21)
    [23] 高丹盈. 钢纤维混凝土轴压应力-应变全曲线的研究[J]. 水利学报, 1991 (10): 43-48.

    GAO Danying. Study on stress-strain curves of steel fiber reinforced concrete under uniaxial compression[J]. Journal of Hydraulic Engineering, 1991(10): 43-48(in Chinese).
    [24] 张晓燕, 曹晨杰, 孙丽, 等. 钢纤维混凝土轴压应力-应变曲线试验研究[J]. 混凝土, 2013(5):24-27. doi: 10.3969/j.issn.1002-3550.2013.05.007

    ZHANG Xiaoyan, CAO Chenjie, SUN Li, et al. Experimental study on axial compressive stress-strain curve of SFRC[J]. Concrete,2013(5):24-27(in Chinese). doi: 10.3969/j.issn.1002-3550.2013.05.007
    [25] 吕西林, 张颖, 年学成. 钢纤维高强混凝土在单调和重复荷载作用下轴压应力-应变曲线试验研究[J]. 建筑结构学报, 2017, 38(1):135-143.

    LV Xilin, ZHANG Ying, NIAN Xuecheng. Experimental study on stress-strain curves for high-strength steel fiber reinforced concrete under monotonic and repeated compressive loadings[J]. Journal of Building Structures,2017,38(1):135-143(in Chinese).
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1579
  • HTML全文浏览量:  430
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 录用日期:  2020-09-01
  • 网络出版日期:  2020-09-16
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回