留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无机颗粒形状对高储能密度有机复合材料介电性能的影响

钟少龙 郑明胜 邢照亮 陈新 黄河 张翔宇 许振波 党智敏

钟少龙, 郑明胜, 邢照亮, 等. 无机颗粒形状对高储能密度有机复合材料介电性能的影响[J]. 复合材料学报, 2020, 37(11): 2760-2768. doi: 10.13801/j.cnki.fhclxb.20200728.001
引用本文: 钟少龙, 郑明胜, 邢照亮, 等. 无机颗粒形状对高储能密度有机复合材料介电性能的影响[J]. 复合材料学报, 2020, 37(11): 2760-2768. doi: 10.13801/j.cnki.fhclxb.20200728.001
ZHONG Shaolong, ZHENG Mingsheng, XING Zhaoliang, et al. Effect of shape of inorganic particles on dielectric properties of polymer composites with high energy density[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2760-2768. doi: 10.13801/j.cnki.fhclxb.20200728.001
Citation: ZHONG Shaolong, ZHENG Mingsheng, XING Zhaoliang, et al. Effect of shape of inorganic particles on dielectric properties of polymer composites with high energy density[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2760-2768. doi: 10.13801/j.cnki.fhclxb.20200728.001

无机颗粒形状对高储能密度有机复合材料介电性能的影响

doi: 10.13801/j.cnki.fhclxb.20200728.001
基金项目: 国家电网欧洲院项目(SGRIDGKJ[2017]634)
详细信息
    通讯作者:

    党智敏,博士,教授,博士生导师,研究方向为先进能源电工材料与器件 E-mail:dangzm@tsinghua.edu.cn

  • 中图分类号: TB332

Effect of shape of inorganic particles on dielectric properties of polymer composites with high energy density

  • 摘要: 通过在有机基体内添加无机陶瓷颗粒形成二相复合材料是当前研究高储能密度的热点和难点,材料的静电储能特性由其内部电场分布决定。对于纯高聚物材料在均匀外电场环境中其内部电场分布均匀,但当填充无机颗粒形成复合材料时,材料局部电场会发生畸变,进而影响复合材料的介电性能。本文通过有限元方法系统研究了不同形状颗粒,包括球型、纤维状和圆片状颗粒及其空间分布的电响应特性,进而分析其对复合材料储能特性的影响。结果表明,颗粒形状及空间分布的不同均会产生不同的局部电场分布,对于球型颗粒其顶端和低端会出现明显的电场集中现象;对于纤维状颗粒,当其长径比较小时,其端部束缚电荷产生的电场畸变不能被忽略。最后,本文建立了不同形状颗粒填充复合材料三维有限元模型,计算结果表明,在相同填充浓度下,一维纤维状颗粒填充复合材料的介电常数最大,二维圆片状颗粒填充复合材料介电常数最小,而球型颗粒填充复合材料介于二者之间。本文对理解复合材料储能特性的微观机制具有重要的意义。

     

  • 图  1  无机颗粒/有机复合材料局部电场分布示意图

    Figure  1.  Illustration of local electric field in ceramic particles/polymer composites

    图  2  典型高储能密度复合材料的无机颗粒

    Figure  2.  Common ceramic particles for high energy density composites ((a) Spherical particle; (b) Fiber particle; (c) Disk particle)

    A, B, C, D—Key structural points of particles

    图  3  均匀外电场作用下不同形状颗粒填充的无机颗粒/有机复合材料内部电场分布云图及颗粒表面束缚电荷密度: ((a)、(b))球型颗粒; ((c)、(d))纤维状颗粒; ((e)、(f))圆片状颗粒

    Figure  3.  Local electric field distribution and corresponding bound charge density of inorganic particles/polymer composites with different shape of inorganic particles in a uniform external electric field environment: ((a), (b)) Spherical particle; ((c), (d)) Fiber particle; ((e), (f)) Disk particle

    图  4  不同半径的球形无机颗粒填充的无机颗粒/有机复合材料电场分布云图

    Figure  4.  Electric field distribution of inorganic particles/polymer composites with different radius of sphere particles

    图  5  无机颗粒/有机复合材料电场强度沿轴线OP分布

    Figure  5.  Electric field distribution along axis OP of inorganic particles/polymer composites

    图  6  不同长径比纤维状无机颗粒填充的无机/有机复合材料电场分布云图

    Figure  6.  Electric field distribution of inorganic particles/polymer composites with different aspect ratios of fibers particle

    图  7  无机颗粒/有机复合材料电场强度沿轴线OP分布

    Figure  7.  Electric field distribution along axis OP of inorganic particles/polymer composites

    图  8  不同取向角度的纤维状无机颗粒填充的无机颗粒/有机复合材料电场分布云图

    Figure  8.  Electric field distribution of inorganic particles/polymer composites with different orientation angles of fibers particles

    图  9  不同形状无机颗粒填充的无机颗粒/有机复合材料的几何模型

    Figure  9.  Geometry models of inorganic particles/polymer composites with different shapes of inorganic particles ((a) Spherical particle; (b) Fiber particle; (c) Disk particle)

    图  10  不同形状无机颗粒(15vol%)填充的无机颗粒/有机复合材料电场分布云图

    Figure  10.  Electric field distribution of inorganic particles/polymer composites with different shapes of inorganic particles (15vol%) ((a) Spherical particle; (b) Fiber particle; (c) Disk particle)

    图  11  无机颗粒体积分数对无机颗粒/有机复合材料有效介电常数的影响

    Figure  11.  Effects of inorganic particles volume fraction on effective permittivity of inorganic particles/polymer composites

    表  1  无机颗粒/有机复合材料有限元仿真相关几何和介电参数

    Table  1.   Geometric and dielectric parameters of inorganic particles/polymer composites in FEM simulation

    ParameterValue
    Model size/μm 10×10×15
    Applied voltage/μV 15
    Normalized permittivity of organic matrix 1
    Normalized permittivity of inorganic particles 10
    Radius of spherical particles/μm 0.8
    Length of fiber particles/μm 7
    Radius of fiber particles/μm 0.3
    Radius of disk particles/μm 1.5
    Thickness of disk particles/μm 0.3
    下载: 导出CSV
  • [1] DANG Zhimin, YUAN Jinkai, ZHA Junwei, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites[J]. Progress in Materials Science,2012,57(4):660-723. doi: 10.1016/j.pmatsci.2011.08.001
    [2] HUAN Tran Doan, BOGGS Steve, TEYSSEDRE Gilbert, et al. Advanced polymeric dielectrics for high energy density applications[J]. Progress in Materials Science,2016,83:236-269. doi: 10.1016/j.pmatsci.2016.05.001
    [3] 罗莎, 沈佳斌, 郭少云. 高储能密度聚合物基介电复合材料的研究进展[J]. 高分子通报, 2019(8):14-21.

    LUO Sha, SHEN Jiabin, GUO Shaoyun. Polymer-based dielectric composites with high energy storage[J]. Polymer Bulletin,2019(8):14-21(in Chinese).
    [4] 雷清泉, 范勇, 王暄. 纳米高聚物复合材料的结构特性、应用和发展趋势及其思考[J]. 电工技术学报, 2006, 21(2):1-7, 12. doi: 10.3321/j.issn:1000-6753.2006.02.001

    LEI Qingquan, FAN Yong, WANG Xuan. Structure property applications and developing trends of polymer nanocomposites[J]. Transactions of China Electrotechnical Society,2006,21(2):1-7, 12(in Chinese). doi: 10.3321/j.issn:1000-6753.2006.02.001
    [5] HANEMANN Thomas, SZABO Dorothee Vinga. Polymer-nanoparticle composites: From synthesis to modern applications[J]. Materials,2010,3(6):3468-3517. doi: 10.3390/ma3063468
    [6] BI Meihua, HAO Yanan , ZHANG Jiameng, et al. Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites[J]. Nanoscale,2017,9(42):16386-16395. doi: 10.1039/C7NR05212J
    [7] PAN Z B, YAO L M, ZHAI J W, et al. Fast discharge and high energy density of nanocomposite capacitors using Ba0.6Sr0.4TiO3 nanofibers[J]. Ceramics International,2016,42(13):14667-14674. doi: 10.1016/j.ceramint.2016.06.090
    [8] 王岚, 党智敏. 碳纳米管填充的高介电常数聚合物基复合电介质材料[J]. 电工技术学报, 2006, 21(4):24-28. doi: 10.3321/j.issn:1000-6753.2006.04.006

    WANG Lan, DANG Zhimin. Carbon nanotube filled polymer-based dielectric composites with high dielectric constant[J]. Transactions of China Electrotechnical Society,2006,21(4):24-28(in Chinese). doi: 10.3321/j.issn:1000-6753.2006.04.006
    [9] CHEN Jianwen, WANG Xiucai, YU Xinmei, et al. Significantly improved dielectric performance of nanocomposites via loading two dimensional core-shell structure Bi2Te3@SiO2 nanosheets[J]. Applied Surface Science,2018,447:704-710. doi: 10.1016/j.apsusc.2018.04.009
    [10] 杜嘉雯. 二维无机填料/聚合物基柔性介电复合材料的制备与性能[D]. 北京: 清华大学, 2016.

    DU Jiawen. Preparation and properties of two-dimensional inorganic filler/polymer-based flexible dielectric composites[D]. Beijing: Tsinghua University, 2016(in Chinese).
    [11] XIE Bing, ZHANG Haibo, ZHANG Qi, et al. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires[J]. Journal of Materials Chemistry A,2017,5(13):6070-6078. doi: 10.1039/C7TA00513J
    [12] BATRA Saurabh, CAKMAK Miko. Ultra-capacitor flexible films with tailored dielectric constants using electric field assisted assembly of nanoparticles[J]. Nanoscale,2015,7(48):20571-20583. doi: 10.1039/C5NR06253E
    [13] 王旗, 李喆, 尹毅. 微、纳米无机颗粒/环氧树脂复合材料击穿强度性能[J]. 电工技术学报, 2014, 29(12):230-235. doi: 10.3969/j.issn.1000-6753.2014.12.030

    WANG Qi, LI Zhe, YIN Yi. The effect of micro and nano inorganic filler on the breakdown strength of epoxy resin[J]. Transactions of China Electrotechnical Society,2014,29(12):230-235(in Chinese). doi: 10.3969/j.issn.1000-6753.2014.12.030
    [14] TANG Haixiong, LIN Yirong, SODANO Henry A. Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors[J]. Advanced Energy Materials,2013,3(4):451-456. doi: 10.1002/aenm.201200808
    [15] ZHU Yingke, ZHU Yujie, HUANG Xingyi, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets[J]. Advanced Energy Materials,2019,9(36):1901826. doi: 10.1002/aenm.201901826
    [16] TANG Haixiong, LIN Yirong, ANDREWS Clark, et al. Nanocomposites with increased energy density through high aspect ration PZT nanowires[J]. Nanotechnology,2011,22(1):015702. doi: 10.1088/0957-4484/22/1/015702
    [17] TANG Haixiong, LIN Yirong, SODANO Henry A. Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly[J]. Advanced Energy Materials,2012,2(4):469-476. doi: 10.1002/aenm.201100543
    [18] ZHONG Shaolong, DANG Zhimin, ZHA Junwei. Prediction on effective permittivity of 0–3 connectivity particle/polymer composites at low concentration with finite element method[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2018,25(6):2122-2128. doi: 10.1109/TDEI.2018.007193
    [19] MYROSHNYCHENKO V, BROSSEAU C. Finite-element method for calculation of the effective permittivity of random inhomogeneous media[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,2005,71(1):016701.
    [20] WANG Z P, KEITH-NELSON J, HILLBORG H, et al. Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models[J]. Composites Science and Technology,2013,76:29-36. doi: 10.1016/j.compscitech.2012.12.014
    [21] TANG Haixiong, ZHOU Zhi, SODANO Henry A. Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites[J]. ACS Applied Materials Interfaces,2014,6(8):5450-5455.
    [22] ZHONG Shaolong, YIN Lijuan, PEI Jiayao, et al. Effect of fiber alignment on dielectric response in the 1–3 connectivity fiber/polymer composites by quantitative evaluation[J]. Applied Physics Letters,2018,113:122904. doi: 10.1063/1.5049122
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1026
  • HTML全文浏览量:  405
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 录用日期:  2020-07-13
  • 网络出版日期:  2020-07-28
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回