留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维网笼状聚N-羟甲基丙烯酰胺/聚乙二醇半互穿网络复合相变微球的制备及热性能

刘玲伟 邹新全 张鸿 叶泳铭 赵云鹤 石军峰 闫铭 朱浩彤 周炜东 于跃

刘玲伟, 邹新全, 张鸿, 等. 三维网笼状聚N-羟甲基丙烯酰胺/聚乙二醇半互穿网络复合相变微球的制备及热性能[J]. 复合材料学报, 2021, 38(4): 1098-1106. doi: 10.13801/j.cnki.fhclxb.20200831.004
引用本文: 刘玲伟, 邹新全, 张鸿, 等. 三维网笼状聚N-羟甲基丙烯酰胺/聚乙二醇半互穿网络复合相变微球的制备及热性能[J]. 复合材料学报, 2021, 38(4): 1098-1106. doi: 10.13801/j.cnki.fhclxb.20200831.004
LIU Lingwei, ZOU Xinquan, ZHANG Hong, et al. Preparation and thermal properties of three-dimensional cage-like PolyN-methylethylamine/Polyethylene glycol semi-interpenetrating network composite phase change microspheres[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1098-1106. doi: 10.13801/j.cnki.fhclxb.20200831.004
Citation: LIU Lingwei, ZOU Xinquan, ZHANG Hong, et al. Preparation and thermal properties of three-dimensional cage-like PolyN-methylethylamine/Polyethylene glycol semi-interpenetrating network composite phase change microspheres[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1098-1106. doi: 10.13801/j.cnki.fhclxb.20200831.004

三维网笼状聚N-羟甲基丙烯酰胺/聚乙二醇半互穿网络复合相变微球的制备及热性能

doi: 10.13801/j.cnki.fhclxb.20200831.004
基金项目: 辽宁省教育厅基础研究项目(J2019018);大连市科技创新基金(2019J12GX047)
详细信息
    通讯作者:

    张鸿,博士,教授,硕士生导师,研究方向为高分子材料加工改性  E-mail:zhang_hong1234@sina.com

  • 中图分类号: TB324

Preparation and thermal properties of three-dimensional cage-like PolyN-methylethylamine/Polyethylene glycol semi-interpenetrating network composite phase change microspheres

  • 摘要: 以N-羟甲基丙烯酰胺(N-MA)和聚乙二醇(PEG)共晶为原料,通过乳液聚合制得聚N-羟甲基丙烯酰胺(PN-MA)/PEG半互穿网络(SIPN)复合相变材料(CPCM)。利用FTIR、XRD、差示扫描量热仪(DSC)、SEM、EDS等方法对PN-MA/PEG SIPN型CPCM的结构与性能进行了研究。结果表明:所得PN-MA/PEG SIPN型CPCM结晶焓和熔融焓达到78.38 J/g和82.31 J/g,结晶温度和熔融温度分别为36.88℃和32.05℃;CPCM中PN-MA和PEG之间是物理作用,并未发生其它的化学反应;得到的CPCM呈球形,尺寸比较均匀,由粒径200 nm左右的小球聚集形成10~15 μm左右的大球,球内呈现细密的三维网笼状结构;PEG在交联PN-MA网络的限制下被很好地固载,且仍有良好的结晶性能。

     

  • 图  1  半互穿网络(SIPN)型聚N-羟甲基丙烯酰胺(PN-MA)/聚乙二醇(PEG)共晶复合相变材料(CPCM)反应流程

    Figure  1.  Semi-interpenetrating network (SIPN) type poly N-methylol acrylamide (PN-MA)/polyethylene glycol (PEG) eutectic composite phase change material (CPCM) reaction process

    图  2  不同N-MA含量的(PN-MA)/ PEG CPCM的DSC曲线(反应温度为75℃、反应时间为6 h、油水质量比为2∶1)

    Figure  2.  DSC curve of (PN-MA)/ PEG CPCM with different N-MA contents (Reaction temperature is 75℃, reaction time is 6 h, oil to water mass ratio is 2∶1)

    图  3  不同反应时间的(PN-MA)/ PEG CPCM的DSC曲线(N-MA质量分数为18wt%、反应温度为75℃、油水质量比为2∶1)

    Figure  3.  DSC curves of (PN-MA)/ PEG CPCM at different reaction time (N-MA mass fraction is 18wt%, reaction temperature is 75℃, oil to water mass ratio is 2∶1)

    图  4  不同反应温度的(PN-MA)/ PEG CPCM的DSC曲线(N-MA质量分数为18wt%、反应时间为6.5 h、油水质量比为2∶1)

    Figure  4.  DSC curves of (PN-MA)/ PEG CPCM at different reaction temperatures (N-MA mass fraction is 18wt%, reaction time is 6.5 h, oil to water mass ratio is 2:1)

    图  5  不同的油水比的CPCM的DSC曲线(N-MA质量分数18wt%、反应时间为6.5 h、反应温度为75℃)

    Figure  5.  DSC curves of CPCM with different oil-water ratios (N-MA mass fraction is 18wt%, reaction time is 6.5 h, reaction temperature is 75℃)

    图  6  PEG共晶 (a),反应6 h (b)、反应6.5 h(c)、反应7 h (d)、反应7.5 h (e)、反应8 h (f) 的CPCM的FTIR图谱 (N-MA质量分数为18wt%、反应温度为75℃、油水质量比为2:1)

    Figure  6.  FTIR spectra of PEG eutectic (a), reaction 6 h of CPCM (b), reaction 6.5 h of CPCM (c), reaction 7 h of CPCM (d), reaction 7.5 h of CPCM (e), reaction 8 h of CPCM (f) (N-MA mass fraction is 18wt%, reaction temperature is 75℃, oil to water mass ratio is 2:1)

    图  7  最佳工艺下的(PN-MA)/PEG CPCM的SEM图像

    Figure  7.  SEM images of (PN-MA)/PEG CPCM under the best process

    图  8  最佳工艺下的(PN-MA)/PEG CPCM的EDS元素分析mapping图谱

    Figure  8.  EDS elemental analysis mapping spectra of (PN-MA)/PEG CPCM under the best process

    图  9  PEG共晶 (a)、反应6 h (b) 、6.5 h (c)、7 h (d)、7.5 h (e)、8 h (f) 的(PN-MA)/PEG CPCM的XRD图谱 (N-MA质量分数为18wt%、反应温度为75℃、油水质量比为2∶1)

    Figure  9.  XRD spectra of (PN-MA)/ PEG CPCM with PEG eutectic (a), reaction 6 h (b), 6.5 h (c), 7 h (d), 7.5 h (e), 8 h (f) (N-MA mass fraction is 18wt%, reaction temperature is 75℃, oil to water mass ratio is 2∶1)

    图  10  70℃下的PEG共晶和CPCM的形态

    Figure  10.  Comparison of PEG eutectic and CPCM at 70℃

    图  11  热循环100次前后的(PN-MA)/PEG CPCM的DSC曲线

    Figure  11.  DSC curves of (PN-MA)/PEG CPCM before and after 100 thermal cycles

    表  1  实验参数表

    Table  1.   Experimental parameter table

    Parameterabcdef
    Quality of N-MA/wt% 16 17 18 19 20
    Temperature reflex/℃ 60 65 70 75
    Reaction time/h 6 6.5 7 7.5 8
    Oil to water ratio 1.5∶1 2∶1 2.5∶1 3∶1 3.5∶1 4∶1
    Note:a, b, c, d, e and f—Number of changes corresponding to the parameter.
    下载: 导出CSV

    表  3  不同反应时间的(PN-MA)/PEG CPCM的DSC结果

    Table  3.   DSC results of (PN-MA)/PEG CPCM at different reaction time

    SampleMelting enthalpy/(J·g−1)Melting temperature/℃Crystalline/(J·g−1)Crystallization temperature/℃
    6 h 55.31 31.48 51.24 36.70
    6.5 h 82.31 32.05 78.38 36.88
    7 h 30.92 33.09 27.50 36.88
    7.5 h 59.14 31.96 54.76 38.02
    8 h 32.88 33.85 30.14 35.46
    下载: 导出CSV

    表  2  不同N-MA含量的CPCM的DSC结果

    Table  2.   DSC results of CPCM with different N-MA contents

    Content of N-MAMelting enthalpy/(J·g−1)Melting temperature/℃Crystalline/(J·g−1)Crystallization temperature/℃
    16wt% 12.41 35.37 10.13 30.82
    17wt% 27.06 31.58 25.20 35.37
    18wt% 55.31 31.48 51.24 36.70
    19wt% 49.56 32.81 45.67 36.81
    20wt% 30.45 36.13 26.14 34.99
    下载: 导出CSV

    表  4  不同油水比的(PN-MA)/ PEG CPCM的DSC结果

    Table  4.   DSC results of (PN-MA)/ PEG CPCM by different oil-water ratios

    Oil to water ratioMelting enthalpy/(J·g−1)Melting temperature/℃Crystalline/(J·g−1)Crystallization temperature/℃
    1.5∶1 49.46 31.58 46.32 37.55
    2∶1 82.31 32.05 78.38 36.88
    2.5∶1 41.42 31.67 37.81 37.83
    3∶1 37.49 31.67 33.99 37.36
    3.5∶1 43.55 31.48 40.30 37.88
    4∶1 33.38 31.20 31.12 36.70
    下载: 导出CSV

    表  5  文献中不同CPCM的热能存储特性

    Table  5.   Heat energy storage characteristics of different CPCM in the literature

    PCMBasis materialPhase-transition temperature/℃Latent heat/
    (J·g−1)
    Preparation processReference
    Fatty acids Melamine modified
    phenolic resin
    32.93 87.67 Microcapsules [23]
    Orthoic acid-nutmeg acid Expanded graphite 6.80 136.3 Porous material adsorption [24]
    PEG Diatomite 27.70 87.09 Porous material adsorption [25]
    Paraffin wax Diatomite 54.24 61.96 Porous material adsorption [26]
    Xylitol pentoconate Plaster 52.58 43.89 Blend [27]
    Na2SO4 Porous ceramic 882.17 54.33 Vacuum impregnation [28]
    NaNO3 Expanded perlite 307.35 178.4 Vacuum impregnation [29]
    下载: 导出CSV

    表  6  最佳工艺下的(PN-MA)/PEG CPCM的EDS能谱的元素分布数据

    Table  6.   EDS energy spectrum element distribution data for (PN-MA)/PEG CPCM under optimal process

    ElementLine
    type
    Apparent
    concentration
    k
    ratio
    Mass
    fraction/wt%
    Mass fraction/
    wt% Sigma
    Atomic
    percentage
    Standard
    sample label
    C K line 62.54 0.62541 60.97 0.24 68.74 C Vit
    N K line 19.06 0.03394 20.96 0.28 20.26 BN
    O K line 7.97 0.02682 12.51 0.13 10.59 SiO2
    S K line 0.11 0.00094 0.08 0.01 0.03 FeS2
    Pt M line 6.27 0.06275 5.49 0.08 0.38 Pt
    Total 100.00 100.00
    下载: 导出CSV
  • [1] 孟多, 赵康, 王东旭. 二元脂肪酸/硅藻土助滤剂定形相变复合材料的制备及性能[J]. 复合材料学报, 2018, 35(9):2558-2565.

    MENG Duo, ZHAO Kang, WANG Dongxu. Preparation and properties of binary fatty acid mixture/diatomite filter aid form-stable phase change composite[J]. Acta Materiae Compositae Sinica,2018,35(9):2558-2565(in Chinese).
    [2] 孙东, 荆晓磊. 相变储热研究进展及综述[J]. 节能, 2019, 38(4):154-157. doi: 10.3969/j.issn.1004-7948.2019.04.062

    SUN Dong, JING Xiaolei. Progress and review of phase change heat storage research[J]. Energy Conservation,2019,38(4):154-157(in Chinese). doi: 10.3969/j.issn.1004-7948.2019.04.062
    [3] 相虎昌, 张百浩. 相变蓄热材料在供热系统中设计应用案例分析[J]. 节能, 2019, 38(2):71-72.

    XIANG Huchang, ZHANG Baihao. Case study on the design and application of phase change heat storage materials in heating systems[J]. Energy Conservation,2019,38(2):71-72(in Chinese).
    [4] 许卓新. 相变储能材料的分类及应用探究[J]. 中国设备工程, 2019(2):116-117.

    XU Zhuoxin. Research on the classification and application of phase change energy storage materials[J]. China Plant Engineering,2019(2):116-117(in Chinese).
    [5] 李海丽, 季旭, 冷从斌, 等. 膨胀石墨/五水硫代硫酸钠相变储能复合材料热性能[J]. 复合材料学报, 2016, 33(12):2941-2951.

    LI Haili, JI Xu, LENG Congbin, et al. Thermal performance of expanded graphite/Na2S2O3·5H2O phase change energy storage composite[J]. Acta Materiae Compositae Sinica,2016,33(12):2941-2951(in Chinese).
    [6] 张向倩. 相变储能材料的研究进展与应用[J]. 现代化工, 2019, 39(4):67-70.

    ZHANG Xiangqian. Research progress and applications of phase change materials for energy storage[J]. Modern Chemical Industry,2019,39(4):67-70(in Chinese).
    [7] 王迎斌, 张海峰, 贺行洋, 等. 相变材料的研究进展及应用[J]. 建材世界, 2020, 41(2):6-8.

    WANG Yingbin, ZHANG Haifeng, HE Xingyang, et al. Research progress and application of phase change materials[J]. The World Building Materials,2020,41(2):6-8(in Chinese).
    [8] 赵雅楠, 康智强. 相变储能技术分析及材料应用[J]. 科技风, 2018(23):123.

    ZHAO Ya'nan, KANG Zhiqiang. Phase change energy storage technology analysis and material application[J]. Technology Wind,2018(23):123(in Chinese).
    [9] 张东, 周剑敏, 吴科如, 等. 颗粒型相变储能复合材料[J]. 复合材料学报, 2004(5):103-109. doi: 10.3321/j.issn:1000-3851.2004.05.020

    ZHANG Dong, ZHOU Jianmin, WU Keru, et al. Granulated phase changing composite for energy storage[J]. Acta Materiae Compositae Sinica,2004(5):103-109(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.05.020
    [10] MAZLAN A W, SEYED E H, HASANEN M H, et al. An overview of phase change materials for construction architecture thermal management in hot and dry climate region[J]. Applied Thermal Engineering,2017,112:1240-1259.
    [11] 陈少磊, 田玉琢. 相变材料的发展及应用[J]. 上海节能, 2018(7):519-522.

    CHEN Shaolei, TIAN Yuzhuo. Development and application of phase change material[J]. Shanghai Energy Conservation,2018(7):519-522(in Chinese).
    [12] 何媚质, 杨鲁伟, 张振涛. 有机-无机复合相变材料的研究进展[J]. 化工进展, 2018, 37(12):4709-4718.

    HE Meizhi, YANG Luwei, ZHANG Zhentao. Research progress of organic-inorganic composite phase change materials[J]. Chemical Industry and Engineering Progress,2018,37(12):4709-4718(in Chinese).
    [13] 赵亮, 邢玉明, 芮州峰, 等. 空气浴条件下三水醋酸钠相变材料的储热性能实验[J]. 复合材料学报, 2018, 35(8):2208-2215.

    ZHAO Liang, XING Yuming, RUI Zhoufeng, et al. Experimental study on the thermal energy storage characteristic of sodium acetate trihydrate as phase change material under the air bath condition[J]. Acta Materiae Compositae Sinica,2018,35(8):2208-2215(in Chinese).
    [14] 戴远哲, 唐波, 李旭飞, 等. 相变蓄热材料研究进展[J]. 化学通报, 2019, 82(8):717-724, 730.

    DAI Yuanzhe, TANG Bo, LI Xufei, et al. Research progress in phase change heat storage materials[J]. Chemistry,2019,82(8):717-724, 730(in Chinese).
    [15] 王鑫, 方建华, 刘坪, 等. 相变材料的研究进展[J]. 功能材料, 2019, 50(2):2070-2075.

    WANG Xin, FANG Jianhua, LIU Ping, et al. Research progress of phase change materials[J]. Functional Materials,2019,50(2):2070-2075(in Chinese).
    [16] 尚建丽, 张浩. 癸酸-棕榈酸/SiO2相变储湿复合材料的制备与表征[J]. 复合材料学报, 2016, 33(2):341-349.

    SHANG Jianli, ZHANG Hao. Preparation and characterization of decanoic acid-palmic acid/SiO2 phase change and humidity storage composites[J]. Acta Materiae Compositae Sinica,2016,33(2):341-349(in Chinese).
    [17] WAN X, SU L, GUO B H. Design and preparation of novel shapeable PEG/SiO2/AA shape-stabilized phase change materials based on double-locked network with enhanced heat storage capacity for thermal energy regulation and storage[J]. Powder Technology,2019,353:98-109.
    [18] 张焕芝, 崔韦唯, 夏永鹏, 等. 复合相变材料的制备及热性能研究进展[J]. 化工新型材料, 2019, 47(6):35-38, 43.

    ZHANG Huanzhi, CUI Weiwei, XIA Yongpeng, et al. Research progress in preparation and thermal performance of composite PCMs[J]. New Chemical Materials,2019,47(6):35-38, 43(in Chinese).
    [19] ZHANG H, YANG S, LIU H, et al. Preparation of PNHMPA/PEG interpenetrating polymer networks gel and its application for phase change fibers[J]. Journal of Applied Polymer Science,2013,129(3):1563-1568.
    [20] 郭玺, 曹金珍, 王佳敏. 聚乙二醇改性相变微胶囊-木粉/高密度聚乙烯复合材料的制备与热性能[J]. 复合材料学报, 2017, 34(6):1185-1190.

    GUO Xi, CAO Jinzhen, WANG Jiamin. Preparation and thermal properties of WF/HDPE composites filled with microcapsules modified by polyethylene glycol[J]. Acta Materiae Compositae Sinica,2017,34(6):1185-1190(in Chinese).
    [21] 李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020,39(12): 5066-5085.

    LI Zhao, LI Baorang, CHEN Haozhi. State of the art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5066-5085(in Chinese).
    [22] ZOU X Q, ZHOU W D, SHI J F, et al. Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2020,205:110248.
    [23] 张圆圆, 杨建森. 脂肪酸相变材料的封装制备及热工性质[J].材料导报, 2020,34(16): 16144-16148.

    ZHANG Yuanyuan, YANG Jiansen. Packaging preparation and thermal properties of fatty acid phase change material[J]. Material Review, 2020, 34(16): 16144-16148(in Chinese).
    [24] 王迎辉, 章学来, 纪珺, 等. 正辛酸-肉豆蔻酸/膨胀石墨定形复合相变材料的制备和热物性[J]. 上海海事大学学报, 2019, 40(4):105-110.

    WANG Yinghui, ZHANG Xuelai, JI Jun, et al. Preparation and thermophysical properties of octanoic acid-myristic acid/expanded graphite shape-stabilized composite phase-change material[J]. Journal of Shanghai Maritime University,2019,40(4):105-110(in Chinese).
    [25] SEDAT K, ALI K, AHMET S, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2011,95(7):1647-1653.
    [26] JEONG S G, JEON J, LEE J H, et al. Optimal preparation of PCM/diatomite composites for enhancing thermal properties[J]. International Journal of Heat & Mass Transfer,2013,62:711-717.
    [27] BICER A, SARI A. New kinds of energy-storing building composite PCMs for thermal energy storage[J]. Energy Conversion & Management,2013,69:148-156.
    [28] LIU S, YANG H. Porous ceramic stabilized phase change materials for thermal energy storage[J]. RSC Advances,2016,6:48033-48042.
    [29] LI R, ZHU J, ZHOU W, et al. Thermal compatibility of sodium nitrate/expanded perlite composite phase change materials[J]. Applied Thermal Engineering,2016,103:452-458.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  2720
  • HTML全文浏览量:  447
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 录用日期:  2020-08-11
  • 网络出版日期:  2020-09-01
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回