留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制

高顺 郭正虹

高顺, 郭正虹. 纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制[J]. 复合材料学报, 2020, 37(11): 2897-2907. doi: 10.13801/j.cnki.fhclxb.20200311.002
引用本文: 高顺, 郭正虹. 纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制[J]. 复合材料学报, 2020, 37(11): 2897-2907. doi: 10.13801/j.cnki.fhclxb.20200311.002
GAO Shun, GUO Zhenghong. Synergistic flame retardant mechanism of nano SiO2 and resorcinol bis(diphenylphosphate) on polycarbonate-ABS blends[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2897-2907. doi: 10.13801/j.cnki.fhclxb.20200311.002
Citation: GAO Shun, GUO Zhenghong. Synergistic flame retardant mechanism of nano SiO2 and resorcinol bis(diphenylphosphate) on polycarbonate-ABS blends[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2897-2907. doi: 10.13801/j.cnki.fhclxb.20200311.002

纳米SiO2与间苯二酚-双(二苯基磷酸酯)对聚碳酸酯-ABS合金的协同阻燃机制

doi: 10.13801/j.cnki.fhclxb.20200311.002
基金项目: 国家自然科学基金(51991355)
详细信息
    通讯作者:

    郭正虹,博士,副教授,研究方向为阻燃高分子复合材料 E-maill:guozhenghong@nit.zju.edu.cn

  • 中图分类号: TB324

Synergistic flame retardant mechanism of nano SiO2 and resorcinol bis(diphenylphosphate) on polycarbonate-ABS blends

  • 摘要: 选用以凝聚相阻燃机制为主的间苯二酚-双(二苯基磷酸酯)(RDP)作为阻燃剂,纳米SiO2为协效剂,以熔融共混法制备了聚碳酸酯(PC)-丙烯腈-丁二烯-苯乙烯共聚物(ABS)阻燃合金。通过垂直燃烧(UL94)和锥形量热测试(Cone)探究了纳米SiO2与RDP复配对PC-ABS合金阻燃性能和燃烧行为的影响。采用SEM观察燃烧残炭的微观形貌,用EDS分析炭层表面元素含量的变化,进一步探究了纳米SiO2与RDP在PC-ABS凝聚相中的协效阻燃机制。通过拉伸性能和冲击性能测试研究纳米SiO2与RDP复配对PC-ABS合金力学性能的影响及甲基丙烯酸甲酯-丁二烯-苯乙烯(MBS)对PC-ABS合金的增韧增容作用。结果表明,纳米SiO2与RDP可以在凝聚相中形成Si—O—P化合物,对PC-ABS合金的燃烧炭层起到增强作用,从而改善PC-ABS合金的阻燃性能;适量MBS的加入可以提高PC-ABS合金的冲击强度和断裂伸长率,但会降低其阻燃性能。

     

  • 图  1  SiO2-RDP/(PC-ABS)阻燃合金的热释放速率、质量损失、总热释放量、总生烟量、烟释放速率、CO生成率和CO2生成率的曲线

    Figure  1.  Heat release rate, mass loss, total heat release, total smoke release, smoke production rate, volume fraction of CO and volume fraction of CO2 curves of SiO2-RDP/PC-ABS flame retardant blends

    图  2  10RDP/(PC-ABS)((a)~(c))、1SiO2-10RDP/(PC-ABS)((d)~(f))和1SiO2/(PC-ABS)((g)~(i))阻燃合金的燃烧残炭形貌

    Figure  2.  Morphologies of char residues of 10RDP/(PC-ABS)((a)–(c)), 1SiO2-10RDP/(PC-ABS)((d)–(f)) and 1SiO2/(PC-ABS)((g)–(i)) flame retardant blends

    图  3  10RDP/(PC-ABS)(a)、1SiO2-10RDP/(PC-ABS)(b)和1SiO2/(PC-ABS)(c)阻燃合金燃烧残炭的SEM图像

    Figure  3.  SEM images of char residues of 10RDP/(PC-ABS)(a), 1SiO2-10RDP/(PC-ABS)(b) and 1SiO2/(PC-ABS)(c) flame retardant blends

    图  4  1SiO2-10RDP/(PC-ABS)阻燃合金燃烧残炭表面的P元素(a)和Si元素(b)分布

    Figure  4.  P distribution(a) and Si distribution(b) of char residues of 1SiO2-10RDP/(PC-ABS) flame retardant blends

    图  5  SiO2-RDP-MBS/(PC-ABS)阻燃合金的力学性能

    Figure  5.  Mechanical properties of SiO2-RDP-MBS/(PC-ABS) flame retardant blends

    图  6  PC-ABS ((a)、(b))、10RDP/(PC-ABS) ((c)、(d))、1SiO2-10RDP/(PC-ABS) ((e)、(f))和1SiO2-10RDP-20MBS/(PC-ABS)((g)、(h))阻燃合金缺口冲击断面的SEM图像

    Figure  6.  SEM images of notched impact cross section of PC-ABS ((a),(b)), 10RDP/(PC-ABS) ((c),(d)), 1SiO2-10RDP/(PC-ABS) ((e),(f)) and 1SiO2-10RDP-20MBS/(PC-ABS) ((g),(h)) flame retardant blends

    表  1  SiO2-间苯二酚-双(二苯基磷酸酯)-甲基丙烯酸甲酯-丁二烯-苯乙烯/(聚碳酸酯-丙烯腈-丁二烯-苯乙烯共聚物)(SiO2-RDP-MBS/(PC-ABS))阻燃合金配比

    Table  1.   Formulations of SiO2-resorcinol bis(diphenylphosphate)-methyl methacrylate-butadiene-styrene/(polycarbonate-acrylonitrile-butadiene-styrene)(SiO2-RDP-MBS/(PC-ABS)) flame retardant blends wt%

    SamplePCABSRDPSiO2PTFEMBS
    10RDP/(PC-ABS) 62.7 26.9 10 0.4
    0.5SiO2-10RDP/(PC-ABS) 62.4 26.7 10 0.5 0.4
    1SiO2-10RDP/(PC-ABS) 62.0 26.6 10 1 0.4
    2SiO2-10RDP/(PC-ABS) 61.3 26.3 10 2 0.4
    3SiO2-10RDP/(PC-ABS) 60.6 26.0 10 3 0.4
    4SiO2-10RDP/(PC-ABS) 59.9 25.7 10 4 0.4
    5SiO2-10RDP/(PC-ABS) 58.9 25.2 10 5 0.4
    6SiO2-10RDP/(PC-ABS) 58.5 25.1 10 6 0.4
    7SiO2-10RDP/(PC-ABS) 57.8 24.8 10 7 0.4
    1SiO2/(PC-ABS) 69.0 29.6 1 0.4
    1SiO2-10RDP-5MBS/(PC-ABS) 58.5 25.1 10 1 0.4 5
    1SiO2-10RDP-10MBS/(PC-ABS) 55.0 23.6 10 1 0.4 10
    1SiO2-10RDP-15MBS/(PC-ABS) 51.5 22.1 10 1 0.4 15
    1SiO2-10RDP-20MBS/(PC-ABS) 48.0 20.6 10 1 0.4 20
    1SiO2-10RDP-25MBS/(PC-ABS) 44.5 19.1 10 1 0.4 25
    Note: PTFE—Polytetrafluoroethylene.
    下载: 导出CSV

    表  2  SiO2-RDP-MBS/(PC-ABS)阻燃合金的垂直燃烧 (UL94) 测试结果

    Table  2.   Vertical combustion (UL94) results of SiO2-RDP-MBS/(PC-ABS) flame retardant blends

    Samplet1/st2/st1+t2/sDrippingUL94
    10RDP/(PC-ABS) 12.1 20.3 32.4 N V-1
    0.5SiO2-10RDP/(PC-ABS) 21.4 24.5 45.9 N V-1
    1SiO2-10RDP/(PC-ABS) 3.1 8.9 12.0 N V-0
    2SiO2-10RDP/(PC-ABS) 11.3 31.4 42.7 N V-1
    3SiO2-10RDP/(PC-ABS) 16.8 26.1 42.9 N V-1
    4SiO2-10RDP/(PC-ABS) 25.7 38.7 64.4 N V-1
    5SiO2-10RDP/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    6SiO2-10RDP/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    7SiO2-10RDP/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    1SiO2/(PC-ABS) >30.0 >60.0 >60.0 N No-rating
    1SiO2-10RDP-5MBS/(PC-ABS) 16.2 24.5 40.7 N V-1
    1SiO2-10RDP-10MBS/(PC-ABS) 31.3 50.4 81.7 N V-2
    1SiO2-10RDP-15MBS/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    1SiO2-10RDP-20MBS/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    1SiO2-10RDP-25MBS/(PC-ABS) >30.0 >60.0 >60.0 Y No-rating
    Notes: t1—Self-extinguishing time after the first ignition; t2—Self-extinguishing time after the second ignition;Y—Yes; N—No.
    下载: 导出CSV

    表  3  SiO2-RDP/(PC-ABS)阻燃合金的锥形量热测试结果

    Table  3.   Cone data for SiO2-RDP/(PC-ABS) flame retardant blends

    Sample10RDP/(PC-ABS)1SiO2-10RDP/(PC-ABS)1SiO2/(PC-ABS)
    tign/s 41.5±0.5 42.0±1.0 38.5±0.5
    tPHRR/s 155.0±5.0 167.5±2.5 70±0.1
    PHRR/(kW·m−2) 444.8±22.3 379.1±5.4 566.1±16.8
    THR/(MJ·m−2) 68.2±0.4 70.4±1.5 92.0±1.3
    AHRR/(kW·m−2) 135.9±2.1 142.7±0.6 224.3±2.3
    AMLR/(g·s−1) 0.060±0.001 0.062±0.002 0.082±0.002
    AEHC/(MJ·kg−1) 19.9±0.1 20.4±0.6 24.5±0.4
    ASEA/(m2·kg−1) 1 048.1±35.8 1 068.0±15.1 838.2±45.4
    ACOY/(kg·kg−1) 0.146±0.001 0.156±0.002 0.083±0.001
    ACO2Y/(kg·kg−1) 1.383±0.001 1.382±0.014 1.738±0.041
    TSR/(m2·m−2) 3 592.1±102.9 3 682.1±85.3 3 156.6±182.8
    CHR/% 6.86±0.03 6.94±0.53 5.76±0.98
    FGI/(kW·m−2·s−1) 2.87 2.26 8.09
    FPI/(m2·s·kW−1) 0.093 0.110 0.068
    Notes: PHRR—Peak heat release rate; THR—Total heat release at 600 s; AHRR—Average heat release rate; AMLR—Average mass loss rate; AEHC—Average effective heat of combustion; ASEA—Average specific extinction area; ACOY—Average yield of CO; ACO2Y—Average yield of CO2; TSR—Total smoke release; CHR—Char residue; FGI—Fire spread index; FPI—Fire performance index; tign—Time to ignition; tPHRR—Time to PHRR.
    下载: 导出CSV

    表  4  10RDP/(PC-ABS)、1SiO2-10RDP/(PC-ABS)和1SiO2/(PC-ABS)阻燃合金锥形量热测试后残炭的EDS分析

    Table  4.   EDS analysis of char residues of 10RDP/(PC-ABS), 1SiO2-10RDP/(PC-ABS) and 1SiO2/(PC-ABS) flame retardant blends after Cone tests

    SampleElement/at%
    COPSi
    1SiO2/(PC-ABS) 83.89 16.09 0.03
    10RDP/(PC-ABS) 79.44 18.02 2.54
    1SiO2-10RDP/(PC-ABS) 54.17 36.71 7.24 1.88
    下载: 导出CSV

    表  5  SiO2-RDP-MBS/(PC-ABS)阻燃合金的缺口冲击强度、拉伸强度、断裂伸长率和弹性模量

    Table  5.   Izod impact strength、tensil strength、elongation at break and tensile modulus of SiO2-RDP-MBS/(PC-ABS) flame retardant blends

    SampleIzod impact strength/(kJ·m−2)Tensile strength/MPaElongation at break/%Tensile modulus/MPa
    10RDP/(PC-ABS) 8.6±2.4 51.4±2.8 19.2±5.1 838.7±146.2
    1SiO2-10RDP/(PC-ABS) 6.0±1.1 50.9±3.7 18.6±3.1 893.2±168.4
    1SiO2-10RDP-5MBS/(PC-ABS) 8.1±0.6 47.8±2.4 14.9±3.1 372.2±366.1
    1SiO2-10RDP-10MBS/(PC-ABS) 13.1±3.5 39.8±2.9 25.1±6.8 504.1±84.6
    1SiO2-10RDP-15MBS/(PC-ABS) 15.4±1.5 36.9±2.9 37.9±5.8 406.2±178.5
    1SiO2-10RDP-20MBS/(PC-ABS) 26.8±3.5 32.3±3.3 29.1±4.1 414.9±105.9
    1SiO2-10RDP-25MBS/(PC-ABS) 23.1±0.9 27.7±2.6 24.5±8.1 468.1±149.1
    下载: 导出CSV
  • [1] LEE E J, PARK H J, KIM S M, et al. Effects of molecular weight of PC on mechanical properties of PC/ABS blends using high-shear rate processing[J]. Korean Chemical Engineering Research,2018,56(3):343-348.
    [2] PAWLOWSKI K H, SCHARTEL B. Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol a polycarbonate/acrylonitrile-butadiene-styrene blends[J]. Polymer Degradation and Stability,2008,93(3):657-667. doi: 10.1016/j.polymdegradstab.2008.01.002
    [3] 朱世东, 徐自强, 白真权 , 等. 纳米材料国内外研究进展Ⅱ: 纳米材料的应用与制备方法法[J]. 热处理技术与装备, 2010, 31(4):1-8. doi: 10.3969/j.issn.1673-4971.2010.04.001

    ZHU Shidong, XU Ziqiang, BAI Zhenquan, et al. Research of the nano-materials at home and abroad Ⅱ: The applications and preparation of the nano-material[J]. Heat Treatment Technology and Equipment,2010,31(4):1-8(in Chinese). doi: 10.3969/j.issn.1673-4971.2010.04.001
    [4] BEE S T, LIM K S, SIN L T, et al. Interactive effect of ammonium polyphosphate and montmorillonite on enhancing flame retardancy of PC/ABS composites[J]. Iranian Polymer Journal,2018,27(11):899-911. doi: 10.1007/s13726-018-0664-z
    [5] ZHANG W, LI Y G, MA H J, et al. Novel phosphorus-nitrogen-silicon copolymers with double-decker silsesquioxane in the main chain and their flame retardancy application in PC/ABS[J]. Fire and Materials,2018,42(8):946-957. doi: 10.1002/fam.2649
    [6] WEI P, TIAN G H, YU H Z, et al. Synthesis of a novel organic-inorganic hybrid mesoporous silica and its flame retardancy application in PC/ABS[J]. Polymer Degradation and Stability,2013,98(5):1022-1029. doi: 10.1016/j.polymdegradstab.2013.02.006
    [7] ZHENG K, CHEN L, LI Y, et al. Praparation and thermal properties of silica-graft acrylonitrile-butadiene-styrene nanocomposites[J]. Polymer Engineering and Science,2004,44(6):1077-1082. doi: 10.1002/pen.20100
    [8] 徐晓楠, 卢林刚, 殷全明, 等. 四苯基双酚A二磷酸酯及复配纳米SiO2体系阻燃PC/ABS合金的热动力学分析[J]. 火灾科学, 2009, 18(2):95-100. doi: 10.3969/j.issn.1004-5309.2009.02.008

    XU Xiaonan, LU Lingang, YIN Quanming, et al. Kinetic study on pyrolysis of rolysis of bisphenol A diphosphate flame-retarded PC/ABS[J]. Fire Science,2009,18(2):95-100(in Chinese). doi: 10.3969/j.issn.1004-5309.2009.02.008
    [9] 钟柳, 刘治国, 欧育湘. BDP阻燃PC/ABS及其复合材料的阻燃性和热降解动力学[J]. 中国塑料, 2008, 22(5):25-29.

    ZHONG Liu, LIU Zhiguo, OU Yuxiang. Flame retardancy and kinetics of thermal degradation of flame retardant PC/ABS and its nanocomposites[J]. China Plastics,2008,22(5):25-29(in Chinese).
    [10] ASTM International. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D2863—19[S]. West Conshohocken: ASTM International, 2019.
    [11] 中国国家标准化管理委员会. 塑料 悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of izod impact strength: GB/T 1843—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    [12] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of tensile properties Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2007(in Chinese).
    [13] International Organization for Standardization. Reaction-to-fire tests: Heat release, smoke production and mass loss rate Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660—1∶2015[S]. Geneva: International Organization for Standardization, 2015.
    [14] JANG B N, WILKIE C A. The thermal degradation of bisphenol A polycarbonate in air[J]. Thermochimica Acta,2005,426(1-2):73-84.
    [15] REALINHO V, HAURIE L, FORMOSA J, et al. Flame retardancy effect of combined ammonium polyphosphate and aluminium diethyl phosphinate in acrylonitrile-butadiene-styrene[J]. Polymer Degradation and Stability,2018,155:208-219. doi: 10.1016/j.polymdegradstab.2018.07.022
    [16] FENG J, CARPANESE C, FINA A. Thermal decomposition investigation of ABS containing Lewis-acid type metal salts[J]. Polymer Degradation and Stability,2016,129:319-327. doi: 10.1016/j.polymdegradstab.2016.05.013
    [17] PAPASPYRIDES C D, KILIARIS P. Polymer green flame retardants[M]. Elsevier, 2014.
    [18] QI Z, ZHANG W, HE X, et al. High-efficiency flame retardency of epoxy resin composites with perfect T8 caged phosphorus containing polyhedral oligomeric silsesquioxanes (P-POSSs)[J]. Composites Science and Technology,2016,127:8-19.
    [19] MONTERO B, RAMIREZ C, RICO M, et al. Effect of an epoxy octasilsesquioxane on the thermodegradation of an epoxy/amine system[J]. Polymer International,2010,59(1):112-118. doi: 10.1002/pi.2698
    [20] LIU Y L, CHOU C I. The effect of silicon sources on the mechanism of phosphoruse-silicon synergism of flame retardation of epoxy resins[J]. Polymer Degradation and Stability,2005,90(3):515-522. doi: 10.1016/j.polymdegradstab.2005.04.004
    [21] 王德义. 含磷共聚酯/无机纳米复合材料的制备、性能与阻燃机理研究[D]. 成都: 四川大学, 2007.

    WANG Deyi. Preparation, properties and flame retardant mechanism of phosphorus containing copolyester/inorganic nanocomposites[D]. Chengdu: Sichuan University, 2007(in Chinese).
    [22] YANG F, NELSON G L. PMMA/silica nanocomposite studies: Synthesis and properties[J]. Journal of Applied Polymer Science,2004,91(6):3844-3850. doi: 10.1002/app.13573
    [23] 李斌, 王建祺. 聚合物材料燃烧性和阻燃性的评价: 锥形量热仪(CONE)法[J]. 高分子材料科学与工程, 1998, 14(5):15-19. doi: 10.16865/j.cnki.1000-7555.1998.05.004

    LI Bin, WANG Jianqi. Utilization of CONE calorimeter for the appraisal of the flammability and flame retardancy of polymeric materials[J]. Polymer Materials Science and Engineering,1998,14(5):15-19(in Chinese). doi: 10.16865/j.cnki.1000-7555.1998.05.004
    [24] KASHIWAGI T, GILMAN J W, BUTLER K M, et al. Flame retardant mechanism of silica gel/silica[J]. Fire and Materials,2000,24(6):277-289. doi: 10.1002/1099-1018(200011/12)24:6<277::AID-FAM746>3.0.CO;2-A
    [25] CHIANG C L, MA C C M. Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites[J]. Polymer Degradation and Stability,2004,83(2):207-214. doi: 10.1016/S0141-3910(03)00262-3
    [26] SONG R J, ZHANG B Y, HUANG B T, et al. Synergistic effect of supported nickel catalyst with intumescent flame-retardants on flame retardancy and thermal stability of polypropylene[J]. Journal of Applied Polymer Science,2006,102(6):5988-5993. doi: 10.1002/app.25178
    [27] SPONTÓN M, MERCADO L A, RONGDA J C, et al. Preparation, thermal properties and flame retardancy of phosphorus and silicon containing epoxy resins[J]. Polymer Degradation and Stability,2008,93(11):2025-2031. doi: 10.1016/j.polymdegradstab.2008.02.014
    [28] LI J, WEI P, LI L K, et al. Synergistic effect of mesoporous silica SBA-15 on intumescent flame-retardant polypropylene[J]. Fire and Materials,2011,35(2):83-91. doi: 10.1002/fam.1040
    [29] 徐晓楠, 张健. 二氧化硅对膨胀型阻燃聚乙烯的性能影响研究[J]. 火灾科学, 2004, 13(3):168-172.

    XU Xiaonan, ZHANG Jian. Experimental study of the effect of SiO2 on performance of intumencent fire retardant PE[J]. Fire Safety Science,2004,13(3):168-172(in Chinese).
    [30] DEMIR H, ARKIŞ E, BALKÖSE D, et al. Synergistic effect of natural zeolites on flame retardant additives[J]. Polymer Degradation and Stability,2005,89(3):478-483. doi: 10.1016/j.polymdegradstab.2005.01.028
    [31] PICOUET P A, FERNANDEZ A, REALINI C E, et al. Influence of PA6 nanocomposite films on the stability of vacuum-aged beef loins during storage inmodified atmospheres[J]. Meat Science,2014,96(1):574-580. doi: 10.1016/j.meatsci.2013.07.020
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  2928
  • HTML全文浏览量:  532
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-28
  • 录用日期:  2020-02-02
  • 网络出版日期:  2020-03-12
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回