留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CNT纸/SiC对称梯度层状复合材料的高温电磁屏蔽性能和介电性能

蔡艳芝 王源 成来飞 任璇璇 李璇 李阳

蔡艳芝, 王源, 成来飞, 等. CNT纸/SiC对称梯度层状复合材料的高温电磁屏蔽性能和介电性能[J]. 复合材料学报, 2020, 37(11): 2877-2888. doi: 10.13801/j.cnki.fhclxb.20200723.001
引用本文: 蔡艳芝, 王源, 成来飞, 等. CNT纸/SiC对称梯度层状复合材料的高温电磁屏蔽性能和介电性能[J]. 复合材料学报, 2020, 37(11): 2877-2888. doi: 10.13801/j.cnki.fhclxb.20200723.001
CAI Yanzhi, WANG Yuan, CHENG Laifei, et al. High-temperature electromagnetic shielding and dielectric properties of CNT buckypaper/SiC symmetric graded laminated composite[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2877-2888. doi: 10.13801/j.cnki.fhclxb.20200723.001
Citation: CAI Yanzhi, WANG Yuan, CHENG Laifei, et al. High-temperature electromagnetic shielding and dielectric properties of CNT buckypaper/SiC symmetric graded laminated composite[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2877-2888. doi: 10.13801/j.cnki.fhclxb.20200723.001

CNT纸/SiC对称梯度层状复合材料的高温电磁屏蔽性能和介电性能

doi: 10.13801/j.cnki.fhclxb.20200723.001
基金项目: 国家自然科学基金面上项目 (51972261);国家自然科学基金青年项目(51302206)
详细信息
    通讯作者:

    蔡艳芝,博士,教授,博士生导师,研究方向为纳米复合材料 E-mail:caiyanzhi@xauat.edu.cn

  • 中图分类号: TB332

High-temperature electromagnetic shielding and dielectric properties of CNT buckypaper/SiC symmetric graded laminated composite

  • 摘要: 将单层碳纳米管(CNT)纸浸渍酚醛树脂致密化,通过树脂碳层层焊接得到厚度约为2.6 mm的CNT纸/SiC层状梯度复合材料,由13个CNT纸/SiC复合材料结构层和12个膨胀石墨增韧树脂C界面层组成,SiC含量沿厚度方向由中心向两端呈递增的对称梯度分布。CNT纸/SiC层状梯度复合材料的体积密度为1.65 g/cm3,开气孔率为7.25%,在宏观尺度范围获得在SiC基体中均匀弥散分布的高含量的CNT。在X频段范围,CNT纸/SiC层状梯度复合材料600℃时的平均总屏蔽效率(37.19 dB)高于室温(35.00 dB)。较之室温时的屏蔽性能,CNT纸/SiC层状梯度复合材料600℃时的反射系数略有减小,但吸收系数明显增加,透射系数由0.0003减小至0.0002,展示了良好的在电磁屏蔽领域尤其是高温屏蔽领域的应用前景。在X频段范围,随温度由室温升高至600℃,CNT纸/SiC层状梯度复合材料的虚介电常数平均值由114.6增大至149.1;平均损耗正切值由1.62增大至1.79。

     

  • 图  1  碳纳米管(CNT)纸浸渍坯体

    Figure  1.  Infiltrated preform of carbon nanotube (CNT) buckypaper

    图  2  热压固化后的层板状梯度叠层CNT纸/树脂复合材料

    Figure  2.  Graded laminated CNT buckypaper/resin composite after hot pressing curing

    图  3  CNT纸/SiC层状梯度复合材料的XRD图谱

    Figure  3.  XRD pattern of CNT buckypaper/SiC laminated graded composite

    图  4  CNT纸/SiC层状梯度复合材料结构层和界面层的SEM图像

    Figure  4.  SEM images of structural layers and interface layers of CNT buckypaper/SiC laminated graded composite

    图  5  CNT纸/SiC层状梯度复合材料沿厚度方向Si元素的EDX图谱

    Figure  5.  EDX spectrum of Si along thickness direction of CNT buckypaper/SiC laminated graded composite

    图  6  CNT纸/SiC层状梯度复合材料结构层放大的SEM图像

    Figure  6.  Magnified SEM images of structural layer of CNT buckypaper/SiC laminated graded composite

    图  7  CNT纸/SiC层状梯度复合材料的抗氧化性能

    Figure  7.  Oxidation resistance of CNT buckypaper/SiC laminated graded composite

    图  8  CNT纸/SiC层状梯度复合材料表面电阻率随温度的变化

    Figure  8.  Surface resistivity of CNT buckypaper/SiC laminated graded composite varies with temperature

    图  9  CNT纸/SiC层状梯度复合材料室温下和600℃时X波段的屏蔽效率

    Figure  9.  Shielding effectiveness of CNT buckypaper/SiC laminated graded composite at room temperature and 600℃ in X-band

    ST—Total shielding effectiveness; SR—Surface reflection; SA—Internal absorption

    图  10  CNT纸/SiC层状梯度复合材料室温和600℃时在X波段的介电常数

    Figure  10.  Complex permittivities of CNT buckypaper/SiC laminated graded composite at room temperature and 600℃ in X-band

    表  1  CNT纸/SiC层状梯度复合材料在X波段的能量比的平均值

    Table  1.   Average values of energy ratios of CNT buckypaper/SiC laminated graded composite

    TemperatureReflection coefficientAbsorption coefficientAbsorption rateTransmission coefficient
    Room temperature0.97500.02470.98740.0003
    600℃0.95390.04590.99590.0002
    下载: 导出CSV

    表  2  近年来文献中报道的不同陶瓷基复合材料在X频段的高温电磁屏蔽性能

    Table  2.   High-temperature electromagnetic shielding properties of different ceramic-matrix composites in X-band reported in recent papers

    MaterialThickness/mmST/dBSA/dBTemperature dependenceRef.
    Room temperatureHigh
    temperature
    Room temperatureHigh
    temperature
    Fe@CNT/SiC composite with 28.31wt% Fe filling ratio 2.0 36.48 35.28(600℃) 25.6‒27.1 23.8‒25.4(600℃) Slightly drop at high temperature [10]
    Layered Ti3AlC2 ceramic 1.5 Around 30 17‒20 Slightly drop at high temperature [36]
    10wt% MWCNT/SiO2 composite 2.5 22.3‒24.3(500℃) 19.6‒20.6(500℃) Slightly rise at high temperature [37]
    SiCf/BN/SiC composite 3 13‒14.5 20‒21.5(600℃) 8.9‒9.5 12.3‒12.8(600℃) Rise at high temperature [38]
    CNT buckypaper/SiC laminated graded composite 2.6 35.00 37.19(600℃) 16.20‒21.66 22.53‒26.87(600℃) Slightly rise at high temperature This work
    下载: 导出CSV

    表  3  CNT纸/SiC层状梯度复合材料室温和600℃时在X波段的介电常数的平均值

    Table  3.   Average values of complex permittivities of CNT buckypaper/SiC laminated graded composite at room temperature and 600℃ in X-band

    TemperatureReal
    permittivity
    Imaginary
    permittivity
    Loss
    tangent
    Room temperature80.06114.61.62
    600℃91.41149.11.79
    下载: 导出CSV
  • [1] MICHELI D, APOLLO C, PASTORE R, et al. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation[J]. Composites Science and Technology,2010,70(2):400-409. doi: 10.1016/j.compscitech.2009.11.015
    [2] 肇研, 段跃新, 李蔚慰, 等. 多壁碳纳米管复合材料在8 mm波段的吸波性能[J]. 复合材料学报, 2007, 24(3):23-27. doi: 10.3321/j.issn:1000-3851.2007.03.005

    ZHAO Yan, DUAN Yuexin, LI Weiwei, et al. Radar absorbing property in eight millimetre wave of MWCNTs/GF/epoxy composites[J]. Acta Materiae Compositae Sinica,2007,24(3):23-27(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.03.005
    [3] 赵琪, 马俊宾, 谢明, 等. 超声喷雾化学镀法制备镀Ni碳纳米管及其微波吸收性能[J]. 复合材料学报, 2018, 35(1):117-123.

    ZHAO Qi, MA Junbin, XIE Ming, et al. Ultrasonic spray preparation of chemical Ni-plating carbon nanotubes and microwave absorbing properties[J]. Acta Materiae Compositae Sinicas,2018,35(1):117-123(in Chinese).
    [4] MANIECKI T, SHTYKA O, MIERCZYNSKI P, et al. Carbon nanotubes: Properties, synthesis, and application[J]. Fibre Chemistry,2018,50(4):297-300.
    [5] AKBULUT H, NALCI D, GULER A, et al. Carbon-silicon composite anode electrodes modified with MWCNT for high energy battery applications[J]. Applied Surface Science,2018,446:222-229. doi: 10.1016/j.apsusc.2018.01.102
    [6] LIU X, YIN X, KONG L, et al. Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites[J]. Carbon,2014,68:501-510. doi: 10.1016/j.carbon.2013.11.027
    [7] MEI H, HAN D, XIAO S, et al. Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers[J]. Carbon,2016,109:149-153. doi: 10.1016/j.carbon.2016.07.070
    [8] YIN X, KONG L, ZHANG L, et al. Electromagnetic properties of Si—C—N based ceramics and composites[J]. International Materials Reviews,2014,59(6):326-356. doi: 10.1179/1743280414Y.0000000037
    [9] MORISADA Y, MIYAMOTO Y, TAKAURA Y, et al. Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes[J]. International Journal of Refractory Metals and Hard Materials,2007,25(4):322-327. doi: 10.1016/j.ijrmhm.2006.08.005
    [10] MEI H, ZHAO X, GUI X, et al. SiC encapsulated Fe@CNT ultra-high absorptive shielding material for high temperature resistant EMI shielding[J]. Ceramics International,2019,45(14):17144-17151. doi: 10.1016/j.ceramint.2019.05.268
    [11] CAI Y, CHEN L, YANG H, et al. Mechanical and electrical properties of carbon nanotube buckypaper reinforced silicon carbide nanocomposites[J]. Ceramics International,2016,42(4):4984-4992. doi: 10.1016/j.ceramint.2015.12.011
    [12] BI S, MA L, MEI B, et al. Silicon carbide/carbon nanotube heterostructures: Controllable synthesis, dielectric properties and microwave absorption[J]. Advanced Powder Technology,2014,25(4):1273-1279. doi: 10.1016/j.apt.2014.03.001
    [13] DING D, WANG J, YU X, et al. Dispersing of functionalized CNTs in Si—O—C ceramics and electromagetic wave absorbing and mechanical properties of CNTs/Si—O—C nanocomposites[J]. Ceramics International,2020,46(4):5407-5419. doi: 10.1016/j.ceramint.2019.10.297
    [14] LANFANT B, LECONTE Y, DEBSKI N, et al. Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites[J]. Ceramics International,2019,45(2):2566-2575. doi: 10.1016/j.ceramint.2018.10.187
    [15] HAN D, MEI H, XIAO S, et al. A review on the processing technologies of carbon nanotube/silicon carbide composites[J]. Journal of the European Ceramic Society,2018,38(11):3695-3708. doi: 10.1016/j.jeurceramsoc.2018.04.033
    [16] DOLATI S, AZARNIYA A, AZARNIYA A, et al. Toughening mechanisms of SiC-bonded CNT bulk nanocomposites prepared by spark plasma sintering[J]. International Journal of Refractory Metals & Hard Materials,2018,71:61-69.
    [17] JIANG D, ZHANG J, LV Z. Multi-wall carbon nanotubes (MWCNTs)-SiC composites by laminated technology[J]. Journal of the European Ceramic Society,2012,32(7):1419-1425. doi: 10.1016/j.jeurceramsoc.2011.07.035
    [18] SONG N, LIU H, FANG J. Fabrication and mechanical properties of multi-walled carbon nanotube reinforced reaction bonded silicon carbide composites[J]. Ceramics International,2016,42(1):351-356. doi: 10.1016/j.ceramint.2015.08.117
    [19] LI Y, FERNANDEZ-RECIO L, GERSTEL P, et al. Chemical modification of single-walled carbon nanotubes for the reinforcement of precursor-derived ceramics[J]. Chemistry of Materials,2008,20(17):5593-5599. doi: 10.1021/cm801125k
    [20] CANDELARIO V M, MORENO R, GUIBERTEAU F, et al. Enhancing the sliding-wear resistance of SiC nanostructured ceramics by adding carbon nanotubes[J]. Journal of the European Ceramic Society,2016,36(13):3083-3089. doi: 10.1016/j.jeurceramsoc.2016.05.004
    [21] KUMARI L, ZHANG T, DU G H, et al. Thermal properties of CNT-Alumina nanocomposites[J]. Composites Science and Technology,2008,68(9):2178-2183. doi: 10.1016/j.compscitech.2008.04.001
    [22] KAUSHIK B K, MAJUMDER M K. Carbon nanotube based VLSI interconnects analysis and design[M]. New Delhi: Springer, 2015.
    [23] CANDELARIO V M, MORENO R, SHEN Z, et al. Liquid-phase assisted spark-plasma sintering of SiC nanoceramics and their nanocomposites with carbon nanotubes[J]. Journal of the European Ceramic Society,2017,37(5):1929-1936. doi: 10.1016/j.jeurceramsoc.2016.12.050
    [24] YANG L W, ZHANG X S, LIU H T, et al. Thermal resistant, mechanical and electrical properties of a novel ultrahigh-content randomly-oriented CNTs reinforced SiC matrix composite-sheet[J]. Composites Part B: Engineering,2017,119:10-17. doi: 10.1016/j.compositesb.2017.03.039
    [25] GU Z, YANG Y, LI K, et al. Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration[J]. Carbon,2011,49(7):2475-2482. doi: 10.1016/j.carbon.2011.02.016
    [26] MEI H, ZHANG H, XU Y, et al. Fabrication and mechanical properties of SiC composites toughened by buckypaper and carbon fiber fabrics alternately laminated[J]. Ceramics International,2017,43(15):12280-12286. doi: 10.1016/j.ceramint.2017.06.090
    [27] 蔡艳芝, 尹洪峰, 周媛, 等. 一种碳纳米管增强SiC基纳米复合材料膜的制备方法: 中国, ZL201410475361.1[P]. 2015-01-21 .

    CAI Yanzhi, YIN Hongfeng, ZHOU Yuan, et al. A preparation method of carbon nanotube reinforced SiC based nanocomposite membrane: China, ZL201410475361.1[P]. 2015-01-21(in Chinese).
    [28] 蔡艳芝, 尹洪峰, 周媛, 等. 一种真空-定向加压浸渍装置: 中国, ZL2014205256055.8[P]. 2015-02-18.

    CAI Yanzhi, YIN Hongfeng, ZHOU Yuan, et al. A vacuum directional pressure impregnation device: China, ZL2014205256055.8[P]. 2015-02-18(in Chinese).
    [29] CHEN L, YIN X, FAN X, et al. Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites[J]. Carbon,2015,95:10-19. doi: 10.1016/j.carbon.2015.08.011
    [30] KONG L, YIN X, HAN M, et al. Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures[J]. Ceramics International,2015,41(3):4906-4915. doi: 10.1016/j.ceramint.2014.12.052
    [31] CAI Y, FAN S, YIN X, et al. Microstructures and mechanical properties of three-dimensional ceramic filler modified carbon/carbon composites[J]. Ceramics International,2014,40(1):399-408. doi: 10.1016/j.ceramint.2013.06.015
    [32] 郭海珠, 余森. 实用耐火原料手册[M]. 1版. 北京: 中国建材工业出版社, 2000年.

    GUO Haizhu, YU Sen. Handbook of practical refractory materials[M]. 1st Edition. Beijing: China Building Materials Industry Press, 2000(in Chinese).
    [33] AL-SALEH M H, SUNDARARAJ U. X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites[J]. Journal of Physics D: Applied Physics,2013,46(3):035304.
    [34] AL-SALEH M H, SAADEH W H, SUNDARARAJ U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study[J]. Carbon,2013,60:146-156. doi: 10.1016/j.carbon.2013.04.008
    [35] AL-SALEH M H, SUNDARARAJ U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon,2009,47(7):1738-1746. doi: 10.1016/j.carbon.2009.02.030
    [36] TAN Y, LUO H, ZHANG H, et al. High-temperature electromagnetic interference shielding of layered Ti3AlC2 ceramics[J]. Scripta Materialia,2017,134:47-51. doi: 10.1016/j.scriptamat.2017.02.043
    [37] WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon,2013,65:124-139. doi: 10.1016/j.carbon.2013.07.110
    [38] MU Y, LI H, DENG J, et al. Temperature-dependent electromagnetic shielding properties of SiCf/BN/SiC composites fabricated by chemical vapor infiltration process[J]. Journal of Alloys and Compounds,2017,724:633-640. doi: 10.1016/j.jallcom.2017.07.084
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1341
  • HTML全文浏览量:  431
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 录用日期:  2020-07-02
  • 网络出版日期:  2020-07-23
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回