留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚苯胺/(蒙脱土-纳米纤维素)三元复合电极材料的制备及电化学性能

王宝霞 李大纲 汪钟凯

王宝霞, 李大纲, 汪钟凯. 聚苯胺/(蒙脱土-纳米纤维素)三元复合电极材料的制备及电化学性能[J]. 复合材料学报, 2021, 38(4): 1242-1251. doi: 10.13801/j.cnki.fhclxb.20200807.001
引用本文: 王宝霞, 李大纲, 汪钟凯. 聚苯胺/(蒙脱土-纳米纤维素)三元复合电极材料的制备及电化学性能[J]. 复合材料学报, 2021, 38(4): 1242-1251. doi: 10.13801/j.cnki.fhclxb.20200807.001
WANG Baoxia, LI Dagang, WANG Zhongkai. Preparation and electrochemical properties of polyaniline/(montmorillonite-cellulosenanofibers) composite electrodes[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1242-1251. doi: 10.13801/j.cnki.fhclxb.20200807.001
Citation: WANG Baoxia, LI Dagang, WANG Zhongkai. Preparation and electrochemical properties of polyaniline/(montmorillonite-cellulosenanofibers) composite electrodes[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1242-1251. doi: 10.13801/j.cnki.fhclxb.20200807.001

聚苯胺/(蒙脱土-纳米纤维素)三元复合电极材料的制备及电化学性能

doi: 10.13801/j.cnki.fhclxb.20200807.001
基金项目: 安徽省高校自然科学研究项目(KJ2019A0179);安徽农业大学引进与稳定人才项目(wd2018-01)
详细信息
    通讯作者:

    王宝霞,博士,副教授,硕士生导师,研究方向为生物质基功能复合材料 E-mail:wangbaoxia@ahau.edu.cn

  • 中图分类号: TB332;TM53

Preparation and electrochemical properties of polyaniline/(montmorillonite-cellulosenanofibers) composite electrodes

  • 摘要: 采用冷冻干燥法制备蒙脱土-纳米纤维素(MTM-CNFs)复合基底材料,再通过原位聚合,无模版法构建有序纳米阵列线结构,合成了聚苯胺(PANi)三元复合电极材料。对其微观结构、合成机制、电导率及电化学性质进行了分析,研究了一维线性材料、二维片状材料与导电聚合物的复合机制及无模版法制备PANi阵列储能材料的方法。结果表明,二维MTM纳米片的加入有利于聚苯胺在基底材料上进行原位生长,形成排列有序的阵列线结构,有效提高了电极材料的比电容量。当复合基底材料中MTM和CNFs质量比为1∶9时,合成的PANi/(MTM-CNFs)三元电极材料比电容量最高,达到596 F/g,相比PANi/CNFs二元材料提高了11.5倍。随着基底材料中MTM纳米片的进一步增加和堆叠,活性物质的减少导致材料比电容量的下降,但相比二元材料,仍有明显提高。另外,MTM纳米片的加入有助于稳定复合电极材料的库伦效率,在1 000次充放电循环过程中始终保持在100%左右。

     

  • 图  1  苯胺聚合过程中溶液颜色变化。

    Figure  1.  Color changes of solution during the polymerization of aniline

    图  2  纳米蒙脱土(MTM)的TEM图像 (a) 和纤维素纳米纤丝(CNFs)的SEM图像 (b)

    Figure  2.  TEN image of montmorillonite (MTM) nanosheet (a) and SEM image of cellulose nano fibers (CNFs) (b)

    图  3  纯聚苯胺(PANi)粉末 (a) 和PANi/CNFs (b)、PANi/(MTM-CNFs)-2 (c) 的SEM图像

    Figure  3.  SEM images of polyaniline (PANi) powder (a) ,PANi/CNFs (b) and PANi/(MTM-CNFs)-2 (c) film

    图  4  复合膜PANi/CNFs (a) 和PANi/(MTM-CNFs)-2 (b) 的SEM图像

    Figure  4.  SEM images of fracture surface of PANi/CNFs (a) and PANi/(MTM-CNFs)-2 (b)

    图  5  PANi在MTM-CNFs复合膜上的聚合机制

    Figure  5.  Schematic illustration of nucleation and growth mechanism of PANi on MTM-CNFs composite films

    图  6  不同MTM含量时复合膜的电导率

    Figure  6.  Conductivity of films with different MTM contents

    图  7  复合材料PANi/CNFs (a) 和PANi/(MTM-CNFs)-2 (b)在不同扫描速率时的循环伏安曲线

    Figure  7.  Cyclic voltammetry curves of PANi/CNFs (a) and PANi/(MTM-CNFs)-2 (b) at different scan rates

    图  8  PANi/CNFs-1和PANi/(MTM-CNFs)-2在不同扫描速率时的比电容量

    Figure  8.  Specific capacitance of PANi/CNFs and PANi/(MTM-CNFs)-2 versus CV curves at different scan rates

    图  9  复合材料PANi/CNFs (a) 和PANi/(MTM-CNFs)-2 (b)在0~0.8V电位窗口时的恒电流充放电曲线

    Figure  9.  Galvanostatic charge-discharge curves of PANi/CNFs (a) and PANi/(MTM-CNFs)-2 (b) at 0-0.8V potential window

    图  10  PANi/CNFs和PANi/(MTM-CNFs)-2在不同电流密度时的比电容量

    Figure  10.  Specific capacitance of PANi/CNFs and PANi/(MTM-CNFs)-2 versus charge-discharge current density

    图  11  1 mol/L H2SO4水溶液电解质中PANi/CNFs和PANi/(MTM-CNFs)-2的交流阻抗

    Figure  11.  Nyquist plots of PANi/CNFs and PANi/(MTM-CNFs)-2 in 1 mol/L H2SO4 aqueous electrolyte

    图  12  PANi/CNFs和PANi/(MTM-CNFs)-2经1 000次循环测试结果分析

    Figure  12.  Analysis result of charge-discharge cycle of PANi/CNFs and PANi/(MTM-CNFs)-2 at a current density of 1 A/g after 1 000 times

    图  13  不同MTM含量时PANi/(MTM-CNFs)复合材料的比电容量

    Figure  13.  Specific capacitance of PANi/(MTM-CNFs) nanocomposites of different MTM contents

    表  1  复合膜中各组分含量

    Table  1.   Content of different components in the composites

    SampleMass fraction/wt%
    CNFsMTMPANi
    PANi/CNFs 83.3 0 16.7
    PANi/(MTM-CNFs)-1 86.4 4.5 9.1
    PANi/(MTM-CNFs)-2 86.3 9.6 4.1
    PANi/(MTM-CNFs)-3 71.9 24 4.1
    PANi/(MTM-CNFs)-4 64.7 32.4 2.9
    PANi/(MTM-CNFs)-5 49 49 2
    下载: 导出CSV
  • [1] LIANG J, JIANG C, WU W. Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: Electrode materials and device designs[J]. Nanoscale,2019,11(15):1-59.
    [2] LIU S, LI H, HE C. Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT: PSS nano-composites[J]. Carbon,2019,149:25-32.
    [3] 张政, 刘洪达, 宋朝霞, 等. 聚苯胺包覆CoFe类普鲁士蓝复合材料的超电容性能[J]. 复合材料学报, 2020, 37(3):731-738.

    ZHANG Z, LIU H D, SONG Z X, et al. Supercapacitive performance of polyaniline coated CoFe prussian blue analogue comosite[J]. Acta materiae compositae sinica,2020,37(3):731-738(in Chinese).
    [4] WANG Y, TRAN H D, KANER R B. Template-free growth of aligned bundles of conducting polymer nanowires[J]. The Journal of Physical Chemistry C,2009,113(24):10346-10349.
    [5] YAO Q, CHEN L, ZHANG W, et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites[J]. ACS Nano,2010,4(4):2445-2451.
    [6] MI H, ZHOU J, CUI Q, et al. Chemically patterned polyaniline arrays located on pyrolytic graphene for supercapacitors[J]. Carbon,2014,80:799-807. doi: 10.1016/j.carbon.2014.09.036
    [7] HUI N, CHAI F, LIN P, et al. Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors[J]. Electrochimica Acta,2016,199:234-241. doi: 10.1016/j.electacta.2016.03.115
    [8] XIE A, ZHOU X, ZHOU W, et al. Fabrication of Pt/porous PANI using attapulgite as template for electro-oxidation of glycerol[J]. Electrochimica Acta,2016,189:215-223. doi: 10.1016/j.electacta.2015.12.104
    [9] XING J, TAO P, WU Z, et al. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors[J]. Carbohydrate Polymers,2019,207:447-459. doi: 10.1016/j.carbpol.2018.12.010
    [10] GUO R, ZHANG L, LU Y, et al. Research progress of nanocellulose for electrochemical energy storage: A review[J]. Journal of Energy Chemistry,2020,51:342-361. doi: 10.1016/j.jechem.2020.04.029
    [11] 卿彦, 易佳楠, 吴义强, 等. 纳米纤维素储能研究进展[J]. 林业科学, 2018, 54(3):134-143.

    QING Y, YI J N, WU Y Q, et al. Advances in application of biamass nanocellulose to green-energy storage[J]. Scientia Silvae Sinicae,2018,54(3):134-143(in Chinese).
    [12] YUE L, XIE Y, ZHENG Y, et al. Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte[J]. Composites Science and Technology,2017,145:122-131. doi: 10.1016/j.compscitech.2017.04.002
    [13] HUANG Z, LI L, WANG Y, et al. Polyaniline-graphene nanocomposites towards high-performance supercapacitors: A review[J]. Composites Communications,2018,8:83-91. doi: 10.1016/j.coco.2017.11.005
    [14] LIAO J, NI W, WANG C, et al. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors[J]. Chemical Engineering Journal,2019,391:123489. doi: 10.1016/j.cej.2019.123489
    [15] WU Q, CHEN M, WANG S, et al. Preparation of sandwich-like ternary hierarchical nanosheets manganese dioxide/polyaniline/reduced graphene oxide as electrode material for supercapacitor[J]. Chemical Engineering Journal,2016,304:29-38. doi: 10.1016/j.cej.2016.06.060
    [16] AYDINLI A, YUKSEL R, UNALAN H E. Vertically aligned carbon nanotube-Polyaniline nanocomposite supercapacitor electrodes[J]. International Journal of Hydrogen Energy,2018,43(40):18617-18625. doi: 10.1016/j.ijhydene.2018.05.126
    [17] BILLINGHAM N C, CALVERT P D. Electrically conducting polymers-A polymer science viewpoint[J]. Advances in Polymer Science,1989:1-104.
    [18] LI R, CHEN Z, LI J, et al. Effective synthesis to control the growth of polyaniline nanofibers by interfacial polymerization[J]. Synthetic Metals,2013,171:39-44. doi: 10.1016/j.synthmet.2013.02.020
    [19] MUJAWAR S H, AMBADE S B, BATTUMUR T, et al. Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application[J]. Electrochimica Acta,2011,56(12):4462-4466. doi: 10.1016/j.electacta.2011.02.043
    [20] HE Y, WANG X, HUANG H, et al. In-situ electropolymerization of porous conducting polyaniline fibrous network for solid-state supercapacitor[J]. Applied Surface Science,2019,469:446-455.
    [21] CHIOU N R, LU C, GUAN J, et al. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties[J]. Nature Nanotechnology,2007,2(6):354-357. doi: 10.1038/nnano.2007.147
    [22] TANG L, YANG Z, DUAN F, et al. Fabrication of graphene sheets/polyaniline nanofibers composite for enhanced supercapacitor properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,520:184-192.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1420
  • HTML全文浏览量:  539
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-28
  • 录用日期:  2020-07-29
  • 网络出版日期:  2020-08-10
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回