留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强度聚苯胺-聚丙烯酸/聚丙烯酰胺导电水凝胶的制备与性能

佘小红 杜娟 朱雯莉

佘小红, 杜娟, 朱雯莉. 高强度聚苯胺-聚丙烯酸/聚丙烯酰胺导电水凝胶的制备与性能[J]. 复合材料学报, 2021, 38(4): 1223-1230. doi: 10.13801/j.cnki.fhclxb.20200806.004
引用本文: 佘小红, 杜娟, 朱雯莉. 高强度聚苯胺-聚丙烯酸/聚丙烯酰胺导电水凝胶的制备与性能[J]. 复合材料学报, 2021, 38(4): 1223-1230. doi: 10.13801/j.cnki.fhclxb.20200806.004
SHE Xiaohong, DU Juan, ZHU Wenli. Preparation and properties of strong polyaniline-polyacrylic acid/polyacrylamide conductive hydrogel[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1223-1230. doi: 10.13801/j.cnki.fhclxb.20200806.004
Citation: SHE Xiaohong, DU Juan, ZHU Wenli. Preparation and properties of strong polyaniline-polyacrylic acid/polyacrylamide conductive hydrogel[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1223-1230. doi: 10.13801/j.cnki.fhclxb.20200806.004

高强度聚苯胺-聚丙烯酸/聚丙烯酰胺导电水凝胶的制备与性能

doi: 10.13801/j.cnki.fhclxb.20200806.004
基金项目: 四川理工学院人才引进项目(2017RCL31);材料腐蚀与防护四川省重点实验室开放基金 (2020CL22)
详细信息
    通讯作者:

    佘小红,硕士研究生,助理实验师,研究方向为高强度水凝胶的设计合成及性能、有机无机纳米复合材料的制备及功能化E-mail:724017857@qq.com

  • 中图分类号: TB322;TQ427.2

Preparation and properties of strong polyaniline-polyacrylic acid/polyacrylamide conductive hydrogel

  • 摘要: 将导电聚合物引入到水凝胶网络中的导电高分子基导电水凝胶,因结合了水凝胶的三维网络结构、良好的生物相容性、优异的力学性能等和导电高分子良好电学性能等优点而被广泛研究,特别是以聚苯胺(PANI)为导电高分子的导电水凝胶。但PANI不溶于水,因此很难制备PANI基导电水凝胶。本文以制备高强度PANI基导电水凝胶为目的,尝试将PANI接枝在亲水性聚合物聚丙烯酸(PAA)上,获得能在水中均匀分散的PANI-PAA导电复合物,再使其与丙烯酰胺(AM)聚合得到高强度的PANI-PAA/PAM导电水凝胶。通过力学性能及电化学性能测试,发现该导电水凝胶具有良好的力学性能和电化学性能。当以十二烷基硫酸钠(SDS)为分散剂时,其电导率可达4.63 S·m−1,可承受压缩应力1.33 MPa (压缩耗散能为85.50 kJ·m−3),拉伸断裂伸长率达964%,相应的断裂强度为0.25 MPa;而以NaOH为分散剂时,凝胶的电导率可达4.19 S·m−1,可承受压缩应力1.13 MPa (压缩耗散能为73.45 kJ·m−3),拉伸断裂伸长率达896%;相应的断裂强度为 0.14 MPa。该研究为高强度聚苯胺基导电水凝胶的制备提供了思路。

     

  • 图  1  PANI-PAA/PAM导电水凝胶的形成机制

    Figure  1.  Formation mechanism of PANI-PAA/PAM conductive hydrogel

    图  2  PAA、PANI及PANI-PAA导电复合物的FTIR图谱

    Figure  2.  FTIR spectra of PAA, PANI and PANI-PAA conductive composite

    图  3  以SDS ((a)~(d)) 和NaOH ((e)~(g)) 为分散剂制备PANI-PAA/PAM导电水凝胶

    Figure  3.  Preparation of PANI-PAA/PAM conductive hydrogel with SDS ((a)-(d)) and NaOH ((e)-(g)) as dispersant, respectively ((a) PANI-PAA/SDS; (b) PANI-PAA/SDS; (c) PANI-PAA/SDS/AM; (e) PANI-PAA/NaOH solution; (f) PANI-PAA/NaOH dispersion; (g) PANI-PAA/NaOH/AM dispersion; ((d), (h)) PANI-PAA/PAM conducting hydrogel)

    图  4  分别以SDS (a) 和NaOH (b) 为分散剂的PANI-PAA/PAM导电水凝胶的FTIR图谱

    Figure  4.  FTIR spectra of PANI-PAA/PAM conducting hydrogel with SDS (a) and NaOH (b) as dispersants, respectively

    图  5  分别以SDS (a) 和NaOH (b) 为分散剂的PANI-PAA/PAM导电水凝胶的SEM图像

    Figure  5.  SEM images for freeze-dried PANI-PAA/PAM conductive hydrogel with SDS (a) and NaOH (b) as dispersants, respectively

    图  6  PANI-PAA/PAM导电水凝胶优异的韧性: 打结和拉伸(a)、扭曲和拉伸(b)及压缩(c)

    Figure  6.  All of the as-prepared PANI-PAA/PAM conducting hydrogels exhibited extraordinary mechanical toughness, and could withstand high levels of deformation by knotting and stretching (a), twisted and stretched (b), compressing (c)

    图  7  分别以SDS (a) 和NaOH (b) 为分散剂的PANI-PAA/PAM导电水凝胶的压缩应力-应变曲线

    Figure  7.  Compression stress-strain curves of PANI-PAA/PAM conductive hydrogels with SDS (a) and NaOH (b) as dispersants, respectively

    图  8  分别以SDS (a) 和NaOH (b) 为分散剂的PANI-PAA/PAM导电水凝胶的拉伸应力-应变曲线

    Figure  8.  Tensile stress-strain curves of the PANI-PAA/PAM conductive hydrogels with SDS (a) and NaOH (b) as dispersants, respectively

    图  9  PANI-PAA/PAM导电水凝胶

    Figure  9.  Digital photographs of PANI-PAA/PAM hydrogel connected in series to power a bulb ((a) Turn off circuit; (b) Turn on circuit)

    表  1  聚苯胺-聚丙烯酸/聚丙烯酰胺 (PANI-PAA/PAM) 导电水凝胶的配方

    Table  1.   Formula of polyaniline-polyacrylic acid/polyacrylamide (PANI-PAA/PAM) conductive hydrogels

    PANI-PAA/gH2O/gSDS/gNaOH/gAM/gMBA(0.25wt%)/μLAPS/gTEMED/μL
    0 5 0.01 1.5 1 100 0.02 100
    0.01 5 0.01 1.5 1 100 0.02 100
    0.02 5 0.02 1.5 1 100 0.04 100
    0.03 5 0.03 1.5 1 100 0.06 100
    0 5 0.03 1.5 1 100 0.025 100
    0.05 5 0.03 1.5 1 100 0.025 100
    0.075 5 0.0475 1.5 1 100 0.0375 100
    0.1 5 0.06 1.5 1 100 0.05 100
    Notes: SDS—Sodium dodecyl sulfate; AM—Acrylamide; MBA—N, N'-methylene bisacrylamide; APS—Ammonium persulfate; TEMED—Tetramethylethylenediamine.
    下载: 导出CSV

    表  2  PANI-PAA/PAM导电水凝胶的压缩性能

    Table  2.   Compression properties of PANI-PAA/PAM conductive hydrogels

    DispersantPANI-PAA/gCompressive stress/MPaElastic modulus/PaDissipated energy/(kJ·m−3)
    SDS 0 1.75 282.00 96.13
    0.01 1.33 251.33 85.50
    0.02 0.52 75.47 32.13
    0.03 0.94 109.33 51.71
    NaOH 0 1.25 220.79 71.86
    0.05 0.98 214.10 66.79
    0.075 1.13 183.48 73.45
    0.1 0.68 111.09 39.96
    下载: 导出CSV

    表  3  PANI-PAA/PAM导电水凝胶的电导率

    Table  3.   Conductivity of PANI-PAA/PAM conducting hydrogel

    DispersantPANI-PAA/gConductivity/(S·m−1)
    SDS 0 0.023
    0.01 2.38
    0.02 2.69
    0.03 4.63
    NaOH 0 0.015
    0.05 3.53
    0.075 3.07
    0.1 4.19
    下载: 导出CSV
  • [1] BAI R B, YANG J W, SUO Z G. Fatigue of hydrogels[J]. European Journal of Mechanics-A/Solids,2019,74:337-370. doi: 10.1016/j.euromechsol.2018.12.001
    [2] ZHANG W, FENG P, CHEN J, et al. Electrically conductive hydrogels for flexible energy storage systems[J]. Progress in Polymer Science,2019,88:220-240. doi: 10.1016/j.progpolymsci.2018.09.001
    [3] YUK H, LU B Y, LIN, S, et al. 3D printing of conducting polymers[J]. Nature Communications,2020,11:1604. doi: 10.1038/s41467-020-15316-7
    [4] ZHAO F, SHI Y, PAN L J, et al. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications[J]. Accounts of Chemical Research,2017,50:1734-1743. doi: 10.1021/acs.accounts.7b00191
    [5] PAN L J, YU G H, ZHAI D Y, et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity[J]. Proceedings of the National Academy of Sciences,2012,109:9287-9292. doi: 10.1073/pnas.1202636109
    [6] MA Z, CHEN P, CHENG W, et al. Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection[J]. Nano Letters,2018,18:4570-4575. doi: 10.1021/acs.nanolett.8b01825
    [7] WU H, YU G H, PAN L J, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature Communications,2013,4:1943. doi: 10.1038/ncomms2941
    [8] LI P P, JIN Z Y, PENG L L, et al. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels[J]. Advanced Materials,2018,30:1800124. doi: 10.1002/adma.201800124
    [9] LI W W, GAO F X, WANG X Q, et al. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors[J]. Angewandte Chemie International Edition,2016,55:9196-9201. doi: 10.1002/anie.201603417
    [10] LI W W, LU H, ZHANG N, et al. Enhancing the properties of conductive polymer hydrogels by freeze-thaw cycles for high-performance flexible supercapacitors[J]. ACS Applied Materials & Interfaces,2017,9:20142-20149.
    [11] KIM H, ABDALA A A, MACOSKO C W. Graphene/polymer nanocomposites[J]. Macromolecules,2010,43:6515-6530. doi: 10.1021/ma100572e
    [12] 陈卉, 马会茹, 官建国. 水溶性导电聚苯胺的制备[J]. 化学进展, 2007, 19:1770-1775.

    CHEN Hui, MA Huiru, GUAN Jianguo. Preparation of water-soluble conducting polyanilines[J]. Progress in Chemistry,2007,19:1770-1775(in Chinese).
    [13] GUPTA B, PRAKASH R. Synthesis of processible doped polyaniline-polyacrylic acid composites[J]. Journal of Applied Polymer Science,2009,114(2):874-882. doi: 10.1002/app.30554
    [14] 郑春晓, 朱赛玲, 陆亚梅, 等. 纳米纤维素/聚丙烯酸-聚丙烯酰胺双网络导电水凝胶的合成与表征[J]. 林业工程学报, 2020, 5:127-134.

    ZHENG Chunxiao, ZHU Sailing, LU Yamei, et al. Synthesis and characterization of cellulose nanofibers/polyacrylicacid-polyacrylamide double network electroconductive hydrogel[J]. Journal of Forestry Engineering,2020,5:127-134(in Chinese).
    [15] HAN J Q, WANG S W, ZHU S L, et al. Electrospun core-shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness[J]. ACS Applied Materials & Interfaces,2019,11(47):44624-44635.
    [16] HAN J Q, DING Q Q, MEI C T, et al. An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostructured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes[J]. Electrochimica Acta,2019,318:660-672. doi: 10.1016/j.electacta.2019.06.132
    [17] SYED JA, TANG S, LU H, et al. Water-soluble polyaniline-polyacrylicacid composites as efficient corrosion inhibitors for 316SS[J]. Industrial & Engineering Chemistry Research,2015,54:2950-2959.
    [18] HAN J Q, LU K Y, YUE Y Y, et al. Nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors[J]. Industrial Crops and Products,2019,128:94-107. doi: 10.1016/j.indcrop.2018.11.004
    [19] DU J, WANG D, XuS M, et al. Stretchable dual nanocompo-site hydrogels strengthened by physical interaction between inorganic hybrid crosslinker and polymers[J]. Applied Clay Science,2017,150:71-80. doi: 10.1016/j.clay.2017.09.008
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  3171
  • HTML全文浏览量:  800
  • PDF下载量:  332
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 录用日期:  2020-08-03
  • 网络出版日期:  2020-08-07
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回