Volume 38 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
YANG Tao, LIU Runai, WANG Wenxian, et al. Formability of high content B4C particle reinforced Al matrix composites by hot rolling[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2234-2243. doi: 10.13801/j.cnki.fhclxb.20200910.001
Citation: YANG Tao, LIU Runai, WANG Wenxian, et al. Formability of high content B4C particle reinforced Al matrix composites by hot rolling[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2234-2243. doi: 10.13801/j.cnki.fhclxb.20200910.001

Formability of high content B4C particle reinforced Al matrix composites by hot rolling

doi: 10.13801/j.cnki.fhclxb.20200910.001
  • Received Date: 2020-07-16
  • Accepted Date: 2020-08-30
  • Available Online: 2020-09-11
  • Publish Date: 2021-07-15
  • The high content B4C (B4C≥30wt%) particle reinforced Al matrix (B4CP/Al) composites have excellent structural and functional properties, especially excellent neutron absorption performance, and are used as shielding materials in the field of nuclear protection. However, due to the addition of the high content B4C particles, the deformation of the B4CP/Al composites is difficult. ABAQUS numerical simulation method was used to simulate the hot rolling process of B4CP/Al composites under different deformations. The B4CP/Al composites fabricated by hot pressing sintering were rolled at 480℃ and its microstructure and mechanical properties were analyzed. The numerical simulation results show that when the hot rolling deformation reaches more than 60%, the stress in the middle area of the B4CP/Al composite plate surface is small, while the stress in the side is large, and the residual stress is easily generated at the edge of the plate. The results show that B4C particles in B4CP/Al composites distribute uniformly and the dislocation density increases with the increase of rolling deformation. When the rolling deformation reaches 70%, the yield strength of the B4CP/Al composite increases to 249.46 MPa and the ultimate tensile strength increases to 299.56 MPa. In the tensile process, the B4C particles have the priority to fracture without the desorbed interface with the matrix. The B4C particles bear the main stress, and the Al matrix has plastic flow, thus improving the strength of the B4CP/Al composites.

     

  • loading
  • [1]
    童攀, 林立, 王全兆, 等. 颗粒尺寸对B4C增强铝基中子吸收材料界面反应与力学性能的影响[J]. 复合材料学报, 2019, 36(4):927-937.

    TONG Pan, LIN Li, WANG Quanzhao, et al. Effects of particle size on interfacial reaction and mechanical properties of B4C reinforced aluminum matrix neutron absorber materials[J]. Acta Materiae Compositae Sinica,2019,36(4):927-937(in Chinese).
    [2]
    ZHANG P, LI J, WANG W X, et al. Design, shielding mechanism and tensile property of a novel (B4CP+6061Al)/Cf/6061Al laminar neutron-shielding composite[J]. Vacuum,2020,177:109383.
    [3]
    TRUJILLO-VAZQUEZ E, PECH-CANUL M I, GUIA-TELLO J C, et al. Surface chemistry modification for elimination of hydrophilic Al4C3 in B4C/Al composites[J]. Materials & Design,2016,89:94-101.
    [4]
    XIAN Y, QIU R, WANG X, et al. Interfacial properties and electron structure of Al/B4C interface: A first-principles study[J]. Journal of Nuclear Materials,2016,478:227-235.
    [5]
    GHASALI E, ALIZADEH M, EBADZADEH T, et al. Mechanical and microstructure comparison between microwave and spark plasma sintering of Al-B4C composite[J]. Journal of Alloys and Compounds,2016,655:93-98.
    [6]
    CHEN H S WANG W X, NIE H H, etal. Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy[J]. Journal of Alloys and Compounds,2018,730:342-351.
    [7]
    DWIVEDI S P. Microstructure and mechanical behaviour of Al/B4C metal matrix composite[J]. Materials Today: Proceedings,2020,25(4):751-754.
    [8]
    AURADI V, RAJESH G L, KORIB S A. Processing of B4C particulate reinforced 6061aluminum matrix composites by melt stirring involving two-step addition[J]. Procedia Materials Sinence,2014,6:1068-1076.
    [9]
    LEE BS, KANG S. Low-temperature processing of B4C-Al composites via infiltration technique[J]. Materials Chemistry and Physics,2001,67(1-3):249-255.
    [10]
    CRAMER C L, ELLIOTT A M, KIGGANS J O, et al. Processing of complex-shaped collimators made via binder jet additive manufacturing of B4C and pressureless melt infiltration of Al[J]. Materials and De-sign,2019,180:107956.
    [11]
    ALIZADEH M. Strengthening mechanisms in particulate Al/B4C composites produced byrepeated roll bonding process[J]. Journal of Alloys and Compounds,2011,509(5):2243-2247.
    [12]
    FATTAH-ALHOUSSEINIA A, NASERI M, ALEMI M H, et al. Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process[J]. Journal of Manufacturing Processes,2016,22:120-126.
    [13]
    XU Z G, JIANG L T, ZHANG Q, et al. The formation, evolution and influence of Gd-containing phases in the (Gd+B4C)/6061Al composites during hot rolling[J]. Journal of Alloys and Compounds,2019,775:714-725.
    [14]
    靳涛, 王伟, 庞晓轩, 等. 热轧工艺对20%B4C/Al复合材料显微组织及缺陷的影响[J]. 材料导报, 2017, 31(s1):102-104.

    JIN Tao, WANG Wei, PANG Xiaoxuan, et al. Effect of hot rolling process on the microstructures and defects of 20%B4C/Al composites[J]. Materials Review,2017,31(s1):102-104(in Chinese).
    [15]
    刘阳阳, 文九巴, 贺俊光. 5052铝合金室温轧制模拟与实验[J]. 塑性工程学报, 2018, 25(5):185-193.

    LIU Yangyang, WEN Jiuba, HE Junguang. Simulation experiment of rolling for aluminum alloy 5052 at room temperature[J]. Journal of Plasticity Engineering,2018,25(5):185-193(in Chinese).
    [16]
    刘文拯, 王东亚, 曹晓卿, 等. 镁 /铝爆炸复合板轧制过程的热力耦合数值模拟[J]. 锻压技术, 2016, 41(10): 166-170.

    LIU Wenzheng, WANG Dongya, CAO Xiaoqing, et al. Numerical simulation of the rolling process for Mg/Al explosive welding composite plate with thermo-mechanical coupled model[J]. Forging and Stamping Technology, 2016, 41(10): 166-170(in Chinese).
    [17]
    刘生璞. B4CP/6061Al合材料轧制变形行为研究[D]. 北京: 北京有色金属研究总院, 2018.

    LIU Shengpu. Study on rolling deformation behavior of B4CP/6061 Al composite[D]. Beijing: General Research Institute for Nonferrous Metals, 2018(in Chinese).
    [18]
    周丽, 王唱舟, 张星星, 等. SiCP/Al复合材料热轧过程的有限元模拟[J]. 金属学报, 2015, 51(7): 889-896.

    ZHOU Li, WANG Changzhou, ZHANG Xingxing, et al. Finite element simulation of hot rolling process for SiCP/Al composites[J]. Acta Metallurgica Sinica, 2015, 51(7): 889-896(in Chinese).
    [19]
    LI Y L, WANG W X, ZHOU J, et al. Hot deformation behaviors and processing maps of B4C/Al6061 neutron absorber composites[J]. Materials Characterization,2017,124:107-116.
    [20]
    崔超. B4C/Al复合材料本构方程及轧制特性研究[D]. 沈阳: 沈阳理工大学, 2017.

    CUI Chao. Research on constitutive equation and rolling properties of B4C/Al composites[D]. Shenyang: Shenyang Ligong University, 2017(in Chinese).
    [21]
    XUE P, WANG B B, CHEN F F, etal. Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure[J]. Materials Characterization,2016,121:187-194.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (888) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return