Volume 37 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
CHU Jingjing, ZHANG Lili, WANG Zhiguo. Research progress of preparation and application of lignin-based metal nanoparticles composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2657-2673. doi: 10.13801/j.cnki.fhclxb.20200714.001
Citation: CHU Jingjing, ZHANG Lili, WANG Zhiguo. Research progress of preparation and application of lignin-based metal nanoparticles composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2657-2673. doi: 10.13801/j.cnki.fhclxb.20200714.001

Research progress of preparation and application of lignin-based metal nanoparticles composites

doi: 10.13801/j.cnki.fhclxb.20200714.001
  • Received Date: 2020-05-15
  • Accepted Date: 2020-07-02
  • Available Online: 2020-07-14
  • Publish Date: 2020-11-15
  • Lignin is the most abundant aromatic polymer. Lignin nanoparticles exhibit properties of nanomaterials on the basis of retaining original characteristic, which have great potential in various functional nanomaterial. In especial, lignin nanoparticles can be used as a green reducing agent for the synthesis of metal nanoparticles to prepare the nano composite materials, which are widely used in the application of catalysis. In this paper, the preparation of lignin nanoparticles and their application for reduction of metal ion, and metal nanoparticles loading were reviewed. It's focused on the research progress of lignin-based metal nanoparticles composites in various fields. Finally, the opportunities and challenges of lignin in the preparation and application of metal nanoparticles composites were summarized and prospected.

     

  • loading
  • [1]
    MALHERBE S, CLOETE T E. Lignocellulose biodegradation: Fundamentals and applications[J]. Reviews in Environmental Science & Biotechnology,2002,1(2):105-114.
    [2]
    SHIKINAKA K, OTSUKA Y, NAVARRO R R, et al. Simple and practicable process for lignocellulosic biomass utilization[J]. Green Chemistry,2016,18(22):5962-5966. doi: 10.1039/C6GC01927G
    [3]
    FANG W, YANG S, WANG X L, et al. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs)[J]. Green Chemistry,2017,19(8):1794-1827. doi: 10.1039/C6GC03206K
    [4]
    BOERIU C G, BRAVO D, GOSSELINK R J A, et al. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy[J]. Industrial Crops and Products,2004,20(2):205-218. doi: 10.1016/j.indcrop.2004.04.022
    [5]
    WANG C, KELLEY S S, VENDITTI R A. Lignin-based thermoplastic materials[J]. ChemSusChem,2016,9(8):770-783. doi: 10.1002/cssc.201501531
    [6]
    GALL D L, RALPH J, DONOHUE T J, et al. Biochemical transformation of lignin for deriving valued commodities from lignocellulose[J]. Current Opinion in Biotechnology,2017,45:120-126. doi: 10.1016/j.copbio.2017.02.015
    [7]
    BEISL S, MILTNER A, FRIEDL A. Lignin from micro- to nanosize: Production methods[J]. International Journal of Molecular Sciences,2017,18(6):1244. doi: 10.3390/ijms18061244
    [8]
    LIEVONEN M, VALLE-DELGADO J J, MATTINEN M L, et al. A simple process for lignin nanoparticle preparation[J]. Green Chemistry,2016,18(5):1416-1422. doi: 10.1039/C5GC01436K
    [9]
    QIAN Y, DENG Y, QIU X, et al. Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor[J]. Green Chemistry,2014,16(4):2156-2163. doi: 10.1039/c3gc42131g
    [10]
    HU J, CHEN M, FANG X, et al. Fabrication and application of inorganic hollow spheres[J]. Chemical Society Reviews,2011,40(11):5472-5491. doi: 10.1039/c1cs15103g
    [11]
    BUDNYAK T M, AMINZADEH S, PYLYPCHUK I V, et al. Peculiarities of synthesis and properties of lignin-silica nanocomposites prepared by sol-gel method[J]. Nanomaterials,2018,8(11):950. doi: 10.3390/nano8110950
    [12]
    ABDEL ZAHER K S, SWELLEM R H, NAWWAR G A M, et al. Proper use of rice straw black liquor-lignin-silica derivatives as efficient green antioxidants for SBR rubber[J]. Pigment & Resin Technology,2014,43(3):159-174.
    [13]
    QU Y, TIAN Y, ZOU B, et al. A novel mesoporous lignin/silica hybrid from rice husk produced by a sol-gel method[J]. Bioresource Technology,2010,101(21):8402-8405. doi: 10.1016/j.biortech.2010.05.067
    [14]
    ZIMNIEWSKA M, KOZŁOWSKI R, BATOG J. Nanolignin modified linen fabric as a multifunctional product[J]. Molecular Crystals and Liquid Crystals,2008,484(1):43/[409]-50/[416
    [15]
    NAIR S S, SHARMA S, PU Y, et al. High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends[J]. ChemSusChem,2014,7(12):3513-3520. doi: 10.1002/cssc.201402314
    [16]
    TORTORA M, CAVALIERI F, MOSESSO P, et al. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules[J]. Biomacromolecules,2014,15(5):1634-1643. doi: 10.1021/bm500015j
    [17]
    FRANGVILLE C, RUTKEVICIUS M, RICHTER A P, et al. Fabrication of environmentally biodegradable lignin nanoparticles[J]. ChemPhysChem,2012,13(18):4235-4243. doi: 10.1002/cphc.201200537
    [18]
    DONG R J, ZHENG D F, YANG D J, et al. pH-responsive lignin-based magnetic nanoparticles for recovery of cellulase[J]. Bioresource Technology,2019,294:122133. doi: 10.1016/j.biortech.2019.122133
    [19]
    MA M, DAI L, SI C, et al. A facile preparation of super long-term stable lignin nanoparticles from black liquor[J]. ChemSusChem,2019,12(24):5239-5245. doi: 10.1002/cssc.201902287
    [20]
    XIONG F, HAN Y, WANG S, et al. Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly[J]. Industrial Crops and Products,2017,100:146-152. doi: 10.1016/j.indcrop.2017.02.025
    [21]
    邓永红, 刘友法, 张伟健, 等. 木质素基偶氮聚合物胶体球的制备[J]. 物理化学学报, 2015, 31(3):505-511. doi: 10.3866/PKU.WHXB201501192

    DENG Y H, LIU Y F, ZHANG W J, et al. Formation of colloidal spheres from a lignin-based azo polymer[J]. Acta Physico-Chimica Sinica,2015,31(3):505-511(in Chinese). doi: 10.3866/PKU.WHXB201501192
    [22]
    MISHRA P K, WIMMER R. Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition[J]. Ultrasonics Sonochemistry,2017,35:45-50.
    [23]
    AGO M, JAKES J E, JOHANSSON L S, et al. Interfacial properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals[J]. ACS Applied Materials & Interfaces,2012,4(12):6849-6856. doi: 10.1021/am302008p
    [24]
    RUIZ-ROSAS R, BEDIA J, LALLAVE M, et al. The production of submicron diameter carbon fibers by the electrospinning of lignin[J]. Carbon,2010,48(3):696-705. doi: 10.1016/j.carbon.2009.10.014
    [25]
    MARTINS G F, PEREIRA A A, STRACÇALANO B A, et al. Ultrathin films of lignins as a potential transducer in sensing applications involving heavy metal ions[J]. Sensors and Actuators B: Chemical,2008,129(2):525-530. doi: 10.1016/j.snb.2007.08.051
    [26]
    MYINT A A, LEE H W, SEO B, et al. One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent[J]. Green Chemistry,2016,18(7):2129-2146. doi: 10.1039/C5GC02398J
    [27]
    LI H, DENG Y, LIU B, et al. Preparation of nanocapsules via the self-assembly of kraft lignin: A totally green process with renewable resources[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 1946-1953.
    [28]
    XIONG F, HAN Y, WANG S, et al. Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly[J]. ACS Sustainable Chemistry & Engineering,2017,5(3):2273-2281.
    [29]
    QIAN Y, ZHONG X, LI Y, et al. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor[J]. Industrial Crops and Products,2017,101:54-60. doi: 10.1016/j.indcrop.2017.03.001
    [30]
    YANG W, DOMINICI F, FORTUNATI E, et al. Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate-g-poly(lactic acid) films before and after accelerated UV weathering[J]. Industrial Crops and Products,2015,77:833-844. doi: 10.1016/j.indcrop.2015.09.057
    [31]
    XIONG F, WU Y, LI G, et al. Transparent nanocomposite films of lignin nanospheres and poly(vinyl alcohol) for UV-absorbing[J]. Industrial & Engineering Chemistry Research,2018,57(4):1207-1212.
    [32]
    LI Y, YANG D, LU S, et al. Encapsulating TiO2 in lignin-based colloidal spheres for high sunscreen performance and weak photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering,2019,7(6):6234-6242.
    [33]
    YANG W, FORTUNATI E, GAO D, et al. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials[J]. ACS Sustainable Chemistry & Engineering,2018,6(3):3502-3514.
    [34]
    BIAN H, JIAO L, WANG R, et al. Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel[J]. European Polymer Journal,2018,107:267-274. doi: 10.1016/j.eurpolymj.2018.08.028
    [35]
    DEL SAZ-OROZCO B, OLIET M, ALONSO M V, et al. Formulation optimization of unreinforced and lignin nanoparticle-reinforced phenolic foams using an analysis of variance approach[J]. Composites Science and Technology,2012,72(6):667-674. doi: 10.1016/j.compscitech.2012.01.013
    [36]
    TIAN D, HU J, BAO J, et al. Lignin valorization: Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites[J]. Biotechnology for Biofuels,2017,10:192. doi: 10.1186/s13068-017-0876-z
    [37]
    DAI L, LIU R, HU L Q, et al. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol[J]. ACS Sustainable Chemistry & Engineering,2017,5(9):8241-8249.
    [38]
    YANGA W, OWCZAREK J S, FORTUNATI E, et al. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol-chitosan films for active packaging[J]. Industrial Crops and Products,2016,94:800-811. doi: 10.1016/j.indcrop.2016.09.061
    [39]
    LU Q, ZHU M, ZU Y, et al. Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin[J]. Food Chemistry,2012,135(1):63-67. doi: 10.1016/j.foodchem.2012.04.070
    [40]
    YANG W, FORTUNATI E, DOMINICI F, et al. Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films[J]. International Journal of Biological Macromolecules,2016,89:360-368. doi: 10.1016/j.ijbiomac.2016.04.068
    [41]
    YANG W, FORTUNATI E, BERTOGLIO F, et al. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles[J]. Carbohydrate Polymers,2018,181:275-284. doi: 10.1016/j.carbpol.2017.10.084
    [42]
    WEI Z, YANG Y, YANG R, et al. Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their recyclable polymerization[J]. Green Chemistry,2012,14(11):3230-3236. doi: 10.1039/c2gc36278c
    [43]
    MATTINEN M L, VALLE-DELGADO J J, LESKINEN T, et al. Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications[J]. Enzyme and Microbial Technology,2018,111:48-56. doi: 10.1016/j.enzmictec.2018.01.005
    [44]
    AGO M, HUAN S, BORGHEI M, et al. High-throughput synthesis of lignin particles (~30 nm to ~2 μm) via aerosol flow reactor: Size fractionation and utilization in pickering emulsions[J]. ACS Applied Materials & Interfaces,2016,8(35):23302-23310. doi: 10.1021/acsami.6b07900
    [45]
    NYPELO T E, CARRILLO C A, ROJAS O J. Lignin supracolloids synthesized from (W/O) microemulsions: Use in the interfacial stabilization of Pickering systems and organic carriers for silver metal[J]. Soft Matter,2015,11(10):2046-2054. doi: 10.1039/C4SM02851A
    [46]
    FIGUEIREDO P, LINTINEN K, KIRIAZIS A, et al. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells[J]. Biomaterials,2017,121:97-108. doi: 10.1016/j.biomaterials.2016.12.034
    [47]
    LESKINEN T, WITOS J, VALLE-DELGADO J J, et al. Adsorption of proteins on colloidal lignin particles for advanced biomaterials[J]. Biomacromolecules,2017,18(9):2767-2776. doi: 10.1021/acs.biomac.7b00676
    [48]
    FIGUEIREDO P, FERRO C, KEMELL M, et al. Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs[J]. Nanomedicine,2017,12(21):2581-2596. doi: 10.2217/nnm-2017-0219
    [49]
    CHEN N, DEMPERE L A, TONG Z. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules[J]. ACS Sustainable Chemistry & Engineering,2016,4(10):5204-5211.
    [50]
    LI Y, WU M, WANG B, et al. Synthesis of magnetic lignin-based hollow microspheres: A highly adsorptive and reusable adsorbent derived from renewable resources[J]. ACS Sustainable Chemistry & Engineering,2016,4(10):5523-5532.
    [51]
    LI X, HE Y, SUI H, et al. One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes[J]. Nanomaterials,2018,8(3):162. doi: 10.3390/nano8030162
    [52]
    LUO X, LIU C, YUAN J, et al. Interfacial solid-phase chemical modification with mannich reaction and Fe(Ⅲ) chelation for designing lignin-based spherical nanoparticle adsorbents for highly efficient removal of low concentration phosphate from water[J]. ACS Sustainable Chemistry & Engineering,2017,5(8):6539-6547.
    [53]
    MASILOMPANE T M, CHAUKURA N, MISHRA S B, et al. Chitosan-lignin-titania nanocomposites for the removal of brilliant black dye from aqueous solution[J]. International Journal of Biological Macromolecules,2018,120:1659-1666.
    [54]
    HU S, HSIEH Y L. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent[J]. Carbohydrate Polymers,2015,131:134-141. doi: 10.1016/j.carbpol.2015.05.060
    [55]
    SHEN Z, LUO Y, WANG Q, et al. High-value utilization of lignin to synthesize Ag nanoparticles with detection capacity for Hg2+[J]. ACS Applied Materials & Interfaces,2014,6(18):16147-16155. doi: 10.1021/am504188k
    [56]
    SHANKAR S, RHIM J W, WON K. Preparation of poly(lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties[J]. International Journal of Biological Macromolecules,2018,107:1724-1731.
    [57]
    SARATALE R G, SARATALE G D, GHODAKE G, et al. Wheat straw extracted lignin in silver nanoparticles synthesis: Expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability[J]. International Journal of Biological Macromolecules,2019,128:391-400. doi: 10.1016/j.ijbiomac.2019.01.120
    [58]
    LI M, JIANG X, WANG D, et al. In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application[J]. Colloids and Surfaces B: Biointerfaces,2019,177:370-376. doi: 10.1016/j.colsurfb.2019.02.029
    [59]
    CHEN F, GONG A S, ZHU M, et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment[J]. ACS Nano,2017,11(4):4275-4282. doi: 10.1021/acsnano.7b01350
    [60]
    MARULASIDDESHWARA M B, KUMAR P R. Synthesis of Pd(0) nanocatalyst using lignin in water for the Mizoroki-Heck reaction under solvent-free conditions[J]. International Journal of Biological Macromolecules,2016,83:326-334. doi: 10.1016/j.ijbiomac.2015.11.034
    [61]
    COCCIA F, TONUCCI L, D’ALESSANDRO N, et al. Palladium nanoparticles, stabilized by lignin, as catalyst for cross-coupling reactions in water[J]. Inorganica Chimica Acta,2013,399:12-18. doi: 10.1016/j.ica.2012.12.035
    [62]
    BARAN T, SARGIN I. Green synthesis of a palladium nanocatalyst anchored on magnetic lignin-chitosan beads for synthesis of biaryls and aryl halide cyanation[J]. International Journal of Biological Macromolecules,2020,155:814-822.
    [63]
    HAN G, WANG X, HAMEL J, et al. Lignin-AuNPs liquid marble for remotely-controllable detection of Pb2+[J]. Scientific Reports,2016,6:38164. doi: 10.1038/srep38164
    [64]
    BUMBUDSANPHAROKE N, KO S. The green fabrication, characterization and evaluation of catalytic antioxidation of gold nanoparticle-lignocellulose composite papers for active packaging[J]. International Journal of Biological Macromolecules,2018,107:1782-1791.
    [65]
    KONOWAŁ E, MODRZEJEWSKA-SIKORSKA A, MOTYLENKO M, et al. Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate[J]. International Journal of Biological Macromolecules,2016,85:74-81. doi: 10.1016/j.ijbiomac.2015.12.071
    [66]
    ROCCA D M, VANEGAS J P, FOURNIER K, et al. Biocompatibility and photo-induced antibacterial activity of lignin-stabilized noble metal nanoparticles[J]. RSC Advances,2018,8(70):40454-40463. doi: 10.1039/C8RA08169G
    [67]
    LIN X, ZHAO J, WU M, et al. Green synthesis of gold, platinum and palladium nanoparticles by lignin and hemicellulose[J]. Journal of Microbiology and Biotechnology,2016,5(4):14-18.
    [68]
    CHANDNA S, THAKUR N S, REDDY Y N, et al. Engineering lignin stabilized bimetallic nanocomplexes: Structure, mechanistic elucidation, antioxidant, and antimicrobial potential[J]. ACS Biomaterials Science & Engineering,2019,5(7):3212-3227.
    [69]
    HAN G, LI X, LI J, et al. Special magnetic catalyst with lignin-reduced Au-Pd nanoalloy[J]. ACS Omega,2017,2(8):4938-4945. doi: 10.1021/acsomega.7b00830
    [70]
    ČELIČ T B, GRILC M, LIKOZAR B, et al. In situ generation of Ni nanoparticles from metal-organic framework precursors and their use for biomass hydrodeoxygenation[J]. ChemSusChem,2015,8(10):1703-1710. doi: 10.1002/cssc.201403300
    [71]
    LI P, LV W, AI S. Green and gentle synthesis of Cu2O nanoparticles using lignin as reducing and capping reagent with antibacterial properties[J]. Journal of Experimental Nanoscience,2015,11(1):18-27.
    [72]
    MA Q, CUI L, ZHOU S, et al. Iron nanoparticles in situ encapsulated in lignin-derived hydrochar as an effective catalyst for phenol removal[J]. Environmental Science and Pollution Research,2018,25(21):20833-20840. doi: 10.1007/s11356-018-2285-7
    [73]
    ZHANG Q, CHEN C, WAN G, et al. Solar light induced synthesis of silver nanoparticles by using lignin as a reductant, and their application to ultrasensitive spectrophotometric determination of mercury(Ⅱ)[J]. Microchimica Acta,2019,186(11):727. doi: 10.1007/s00604-019-3832-8
    [74]
    RICHTER A P, BROWN J S, BHARTI B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core[J]. Nature Nanotechnology,2015,10(9):817-823. doi: 10.1038/nnano.2015.141
    [75]
    NIX C E, HARPER B J, CONNER C G, et al. Toxicological assessment of a lignin core nanoparticle doped with silver as an alternative to conventional silver core nanoparticles[J]. Antibiotics,2018,7(2):40. doi: 10.3390/antibiotics7020040
    [76]
    GROSSMAN A, VERMERRIS W. Lignin-based polymers and nanomaterials[J]. Current Opinion in Biotechnology,2019,56:112-120. doi: 10.1016/j.copbio.2018.10.009
    [77]
    KAUR R, THAKUR N S, CHANDNA S, et al. Development of agri-biomass based lignin derived zinc oxide nanocomposites as promising UV protectant-cum-antimicrobial agents[J]. Journal of Materials Chemistry B,2020,8(2):260-269. doi: 10.1039/C9TB01569H
    [78]
    LÜ Q F, ZHANG J Y, YANG J, et al. Self-assembled poly(N-methylaniline)-lignosulfonate spheres: From silver-ion adsorbent to antimicrobial material[J]. Chemistry,2013,19(33):10935-10944. doi: 10.1002/chem.201204113
    [79]
    LI J, SU M, WANG A, et al. In situ formation of Ag nanoparticles in mesoporous TiO2 films decorated on bamboo via self-sacrificing reduction to synthesize nanocomposites with efficient antifungal activity[J]. International Journal of Molecular Sciences,2019,20(21):5497. doi: 10.3390/ijms20215497
    [80]
    AADIL K R, BARAPATRE A, MEENA A S, et al. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles[J]. International Journal of Biological Macromolecules,2016,82:39-47. doi: 10.1016/j.ijbiomac.2015.09.072
    [81]
    MILCZAREK G, REBIS T, FABIANSKA J. One-step synthesis of lignosulfonate-stabilized silver nanoparticles[J]. Colloids and Surfaces B: Biointerfaces,2013,105:335-341. doi: 10.1016/j.colsurfb.2013.01.010
    [82]
    MARULASIDDESHWARA M B, DAKSHAYANI S S, SHARATH KUMAR M N, et al. Facile-one pot-green synthesis, antibacterial, antifungal, antioxidant and antiplatelet activities of lignin capped silver nanoparticles: A promising therapeutic agent[J]. Materials Science and Engineering C,2017,81:182-190. doi: 10.1016/j.msec.2017.07.054
    [83]
    LI X, WANG Y, WANG B, et al. Antibacterial phase change microcapsules obtained with lignin as the Pickering stabilizer and the reducing agent for silver[J]. International Journal of Biological Macromolecules,2020,144:624-631. doi: 10.1016/j.ijbiomac.2019.12.016
    [84]
    GAN D, XING W, JIANG L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry[J]. Nature Communications,2019,10(1):1487. doi: 10.1038/s41467-019-09351-2
    [85]
    COCCIA F, TONUCCI L, BOSCO D, et al. One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions[J]. Green Chemistry,2012,14(4):1073-1078. doi: 10.1039/c2gc16524d
    [86]
    TIPPAYAWAT P, PHROMVIYO N, BOUEROY P, et al. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity[J]. PeerJ,2016,4:e2589. doi: 10.7717/peerj.2589
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (1906) PDF downloads(204) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return