Volume 38 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
SU Yi, LI Ting, LI Aiqun. Robustness analysis of dynamic properties of polyurethane damping materials based on multi-index control[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1859-1869. doi: 10.13801/j.cnki.fhclxb.20200825.001
Citation: SU Yi, LI Ting, LI Aiqun. Robustness analysis of dynamic properties of polyurethane damping materials based on multi-index control[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1859-1869. doi: 10.13801/j.cnki.fhclxb.20200825.001

Robustness analysis of dynamic properties of polyurethane damping materials based on multi-index control

doi: 10.13801/j.cnki.fhclxb.20200825.001
  • Received Date: 2020-06-11
  • Accepted Date: 2020-08-13
  • Available Online: 2020-08-25
  • Publish Date: 2021-06-23
  • The isolation devices and dampers in architectural structure have large force and deformation under strong earthquake or wind, which requires high damping coefficient of damping material, suitable temperature matching with outdoor environment, and large damping temperature range. Currently, polyurethane damping materials are difficult to satisfy the above-mentioned performance indexes simultaneously, therefore they can not be widely used in structure engineering. In this paper, glass fiber, graphene, tetra-needle like ZnO whiskers (T-ZnOw) and hindered phenol were selected to improve the damping, mechanical properties and temperature properties. Through orthogonal design, polyurethane with different additions were prepared. And the robustness of loss peak value (tanδmax), damping temperature range (ΔT0.5) and glass transition temperature (Tg) were analyzed based on the dynamic thermomechanical analysis (DMA) test. According to the degree of importance of each index, weight assignment was carried out. The optimization scheme was obtained based on analytic hierarchy process (AHP), which is a multi-index weighting evaluation method. The validation test shows that tanδmax is 1.24, ΔT0.5 is 57℃, and Tg is 21.8℃.Compared with the initial group, the improvement rate of tanδmax reaches 16.98 %, and the improvement rate of ΔT0.5 reaches 46.91 %.

     

  • loading
  • [1]
    张志, 许勇. 岳耀, 等. AO-60/丁腈橡胶-环氧化天然橡胶-天然橡胶复合材料的制备及其阻尼性能[J]. 复合材料学报, 2019, 36(8):1796-1803.

    ZHANG Zhi, XU Yong, YUE Yao, et al. Preparation and damping properties of hindered phenol AO-80/nitrile butadiene rubber-epoxidized natural rubber-natural rubber composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1796-1803(in Chinese).
    [2]
    许俊红, 李爱群, 苏毅, 等. 开环式聚降冰片烯共混黏弹性阻尼材料的动态阻尼力学热分析[J]. 高分子材料科学与工程, 2015, 31(7):51-56.

    XU Junhong, LI Aiqun, SU Yi, et al. Dynamic damping mechanical analysis of viscolastic damping material mixed norsorex by ring-opening metathesis polymerization[J]. Polymer Materials Science Engineering,2015,31(7):51-56(in Chinese).
    [3]
    WANG Yueqiong, LIAO Lusheng, LIN Hongtu, et al. Damping properties of natural rubber/epoxidized natural rubber composites with different fillers[J]. Advances in Engineering Research,2018,120:772-775.
    [4]
    SHI X, LI Q, FU G, et al. The effects of a polyol on the damping properties of EVM/PLA blends[J]. Polymer Testing,2015,33:1-6.
    [5]
    李翰模, 杨一林, 李志鹏, 等. 基于网络结构设计制备宽温域高阻尼聚氨酯弹性体[J]. 高分子材料科学与工程, 2017, 33(6):146-151.

    LI Hanmo, YANG Yilin, LI Zhipeng, et al. Preparation of high damping polyurethane with wide temperature range based on network structure designing[J]. Polymer Materials Science & Engineering,2017,33(6):146-151(in Chinese).
    [6]
    MOUSA A. Thermal properties of carboxylated nitrile rubber/nylon-12 composites-filled lignocellulose[J]. Journal of Thermoplastic Composite Materials,2014,27(2):167-179. doi: 10.1177/0892705712475017
    [7]
    LEE K S, CHOI J I, KIM S K, et al. Damping and mechanical properties of composite composed of polyurethane matrix and preplaced aggregates[J]. Construction and Building Materials,2017,3(233):68-75.
    [8]
    KHIMI S R, PICKRING K L. The effect of silane coupling agent on the dynamic mechanical properties of iron sand/natural rubber magnetorheological elastomers[J]. Composites Part B: Engineering,2016,90:115-125. doi: 10.1016/j.compositesb.2015.11.042
    [9]
    LEE D J, KIM M K, WALSH J, et al. Experimental characterization of temperature dependent dynamic properties of glass fiber reinforced polyurethane foams[J]. Polymer Texting,2019,74:30-38. doi: 10.1016/j.polymertesting.2018.12.013
    [10]
    ATIQAH A, JAWAID M, SAPUAN S M, et al. Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites[J]. Composite Structures,2018,202:954-958. doi: 10.1016/j.compstruct.2018.05.009
    [11]
    LIU Gang, TANG Shawei, REN Wenchao, et al. Effect of thermal cycling on the damping behavior in alumina borate whisker with and without Bi2O3 coating reinforced pure aluminum composites[J]. Materials and Design,2014,3(34):244-249.
    [12]
    ADEYINKA Idowu, PRANJAL Nautiyal, LUIZA Fontoura, et al. Multi-scale damping of graphene foam-based polyurethane composites synthesized by electrostatic spraying[J]. Polymer Composites,2019,40:1862-1870. doi: 10.1002/pc.24948
    [13]
    HUNG Puiyan, KINTAK Lau, KUN Qiao, et al. Property enhancement of CFRP composites with different graphene oxide employment methods at a cryogenic temperature[J]. Composites Part A: Applied Science & Manufacturing,2019,120:56-63. doi: 10.1016/j.compositesa.2019.02.012
    [14]
    YANG Dawei, ZHAO Xiuying, CHAN Tung, et al. Investigation of the damping properties of hindered phenol AO-80/polyacrylate hybrids using molecular dynamics simulations in combination with experimental methods[J]. Journal of Materials Science,2016,51(12):5760-5774. doi: 10.1007/s10853-016-9878-7
    [15]
    ZHU H, HU Y M, ZHU W D, et al. Multi-objective design optimization of an engine accessory drive system with a robustness analysis[J]. Applied Mathematical Modelling,2020,77:1564-1581. doi: 10.1016/j.apm.2019.09.016
    [16]
    CHAN KY, YIU C K F, NORDHOLM S. Microphone configuration for beamformer design using the Taguchi method[J]. Measurement,2017,10(25):58-66.
    [17]
    王卫红, 王园. 基于PCA-AHP-IE的多指标评价模型研究与应用[J]. 浙江工业大学学报, 2019, 47(6):591-596.

    WANG Weihong, WANG Yuan. Research and application of multi-criteria evaluation model based on PCA-AHP-IE[J]. Journal of Zhejiang University of Technology,2019,47(6):591-596(in Chinese).
    [18]
    中华人民共和国国家质量监督检验检疫总局. 硫化橡胶或热塑性橡胶压入硬度试验方法第1部分: 邵氏硬度计法: GB/T 531.1—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Rubber, vulcanized or thermoplastic-Determination of indentation hardness-Part 1: Duromerer method (Shore hardness): GB/T 531.1—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [19]
    中华人民共和国国家质量监督检验检疫总局. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [20]
    中华人民共和国国家质量监督检验检疫总局. 硫化橡胶或热塑性橡胶撕裂强度的测定: 裤形、直角形和新月形试样: GB/T 529.1—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of tear strength (Trouser, angle and crescent test pieces): GB/T 529.1—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [21]
    中华人民共和国国家质量监督检验检疫总局. 硫化橡胶或热塑性橡胶 压缩永久变形的测定 第1部分: 在常温及高温条件下: GB/T 7759.1—2015[S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of compression set-Part 1: At ambient or elevated temperatures: GB/T 7759.1—2015[S]. Beijing: Standards Press of China, 2015(in Chinese).
    [22]
    中华人民共和国国家质量监督检验检疫总局. 《硫化橡胶或热塑性橡胶动态性能的测定 第1部分: 通则》: GB/T 9870.1—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of dynamic properties-Part 1: General guidance: GB/T 9870.1—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [23]
    中华人民共和国国家质量监督检验检疫总局. 《橡胶支座第3部分: 建筑隔震橡胶支座》: GB 20688.3—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rubber bearing-Part 3: Elastomeric seismic-Protection isolators for buildings: GB 20688.3—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(12)

    Article Metrics

    Article views (1167) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return