Volume 37 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
ZHANG Ni, ZHENG Chenyang, XIAN Li’na, et al. Flexural behavior of glass fiber reinforced polymer tube filled with steel bars/concrete hollow members[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3052-3063. doi: 10.13801/j.cnki.fhclxb.20200417.001
Citation: ZHANG Ni, ZHENG Chenyang, XIAN Li’na, et al. Flexural behavior of glass fiber reinforced polymer tube filled with steel bars/concrete hollow members[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3052-3063. doi: 10.13801/j.cnki.fhclxb.20200417.001

Flexural behavior of glass fiber reinforced polymer tube filled with steel bars/concrete hollow members

doi: 10.13801/j.cnki.fhclxb.20200417.001
  • Received Date: 2020-03-02
  • Accepted Date: 2020-04-02
  • Available Online: 2020-04-18
  • Publish Date: 2020-12-15
  • In order to study the flexural performance of glass fiber reinforced polymer (GFRP) tube filled with steel bars/concrete hollow members, a nonlinear analysis program was developed. The effects of main parameters such as hollow rate, reinforcement ratio, GFRP tube wall thickness and strength grade of concrete were analyzed systematically. The program was verified by test. The calculation formula of the bearing capacity of GFRP tube filled with reinforced hollow concrete members was established. The results show that the calculation results are in good agreement with the test results by using the nonlinear analysis program and the established bearing capacity formula. The flexural bearing capacity increases with the decrease of the hollow rate and the increase of the reinforcement ratio, the GFRP tube wall thickness and the concrete strength grade. The hollow rate has the greatest influence on the flexural bearing capacity, followed by the reinforcement ratio and the thickness of GFRP tube wall thickness, and the concrete strength grade has relatively less influence on the flexural bearing capacity. The radius ratio of hollow part should be 0.25-0.5. The flexural bearing capacity of the hollow members can be compensated by properly increasing the reinforcement ratio, GFRP tube wall thickness or concrete strength grade. The research conclusion can provide reference for the practical application of the GFRP tube filled with steel bars/concrete hollow member structure.

     

  • loading
  • [1]
    王连广, 陈百玲. GFRP管及钢管型钢混凝土结构[M]. 沈阳: 辽宁科学技术出版社, 2013.

    WANG Lianguang, CHEN Bailing. Steel reinforced concrete-filled glass fiber reinforced polymer or steel tubular sturctures[M]. Shenyang: Liaoning Science and Technology Publishing House, 2013(in Chinese).
    [2]
    田会文, 周臻, 陆纪平, 等. 纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟[J]. 复合材料学报, 2020, 37(7): 1629-1638

    TIAN Huiwen, ZHOU Zhen, LU Jiping, et al. Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer-confined ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1629-1638.
    [3]
    韩振宇, 张鹏, 郑天宇, 等. 纤维增强树脂复合材料网络结构成型工艺研究进展[J]. 复合材料学报, 2020, 37(4): 845-858.

    HAN Zhenyu, ZHANG Peng, ZHENG Tianyu, et al. Research poogress of forming proming process of fiber reinforced polymer composite grid structure[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 845-858(in Chinese).
    [4]
    厉嘉鑫. GFRP管约束型钢再生混凝土组合柱轴压性能研究[D]. 西安: 西安理工大学, 2019.

    LI Jiaxin. Research on axial compression performance of GFRP tube filled with steel reinforced recycled concrete composite columns[D]. Xi’an: Xi’an University of Technology, 2019(in Chinese).
    [5]
    李峰, 刘加顺, 张东东, 等. GFRP管-铝合金管纤维缠绕齿连接接头拉伸试验[J]. 复合材料学报, 2018, 35(10):2678-2688.

    LI F, LIU J S, ZHANG D D, et al. Tensile experiments on the tooth connections with filament winding between GFRP tube and aluminum alloy tube[J]. Acta Materiae Compositae Sinica,2018,35(10):2678-2688(in Chinese).
    [6]
    IDRIS Y, OZBAKKALOGLY T. Flexural behavior of FRP-HSC-steel double skin tubular beams under reversed-cyclic loading[J]. Thin-Walled Structures,2015,87(2):89-101.
    [7]
    樊彬彬, 单鲁阳, 章雪峰. GFRP管约束混凝土短柱滞回性能的有限元分析[J]. 建筑结构, 2018, 48(2):567-570.

    FAN Binbin, SHAN Luyang, ZHANG Xuefeng. Finite element analysis of hysteretic behavior of concrete short columns confined with GFRP tube[J]. Building Structure,2018,48(2):567-570(in Chinese).
    [8]
    SUN H P, JIA M M, ZHANG S M. Study of buckling-restrained braces with concrete infilled GFRP tubes[J]. Thin-Walled Structures,2019,136(3):16-33.
    [9]
    HUANG Liang, ZHANG Chen, YAN Libo. Flexural behavior of U-shape FRP profile-RC composite beams with inner GFRP tube confinement at concrete compression zone[J]. Composite Structures,2018,184(1):674-687.
    [10]
    HASSAN W M, HODHOD O A, HILAL M S, et al. Behavior of eccentrically loaded high strength concrete columns jacketed with FRP laminates[J]. Construction and Building Materials,2017,138(5):508-527.
    [11]
    REALFONSO R, NAPOLI A. Confining concrete members with FRP systems: predictive vs design models[J]. Composite Structures,2013,104(5):304-319.
    [12]
    YEH F Y, CHANG K C. Size and shape effects on strength and ultimate strain in FRP confined rectangualar concrete columns[J]. Journal of Mechanics,2012,28(4):677-690. doi: 10.1017/jmech.2012.118
    [13]
    WEI Y Y, WU Y F. Unified stress-strain model of concrete for FRP-confined columns[J]. Construction and Building Materials,2012,26(1):381-392. doi: 10.1016/j.conbuildmat.2011.06.037
    [14]
    秦国鹏. GFRP管钢筋混凝土构件力学性能研究[D]. 沈阳: 东北大学, 2009.

    QIN Guopeng. Mechanical behaviors study on GFRP tube filled with reinforced concrete members[D]. Shenyang: Northeastern University, 2009(in Chinese).
    [15]
    WANG L G, HAN H F, LIU P. Behavior of reinforced concrete-filled tube GFRP tubes under eccentric compression loading[J]. Materials and Structures,2016,7(9):2819-2827.
    [16]
    LIM J C, OZBAKKALOGLU T. Unified stress–strain model for FRP and actively confined normal-strength and high-strength concrete[J]. Journal of Composites for Construction,2014,19(4):1-13.
    [17]
    CASCARDI Alessio, MICELLI Francesco, AIELLO Antonietta. Unified model for hollow columns externally confined by FRP[J]. Engineering Structures,2016,1(111):119-130.
    [18]
    ABDALLAH Hussein, SHAZLY Maha, MOHAMED Mostafa, et al. Nonlinear finite element analysis of short and long reinforced concrete columns confined with GFRP tubes[J]. Journal of Reinforced Plastics and Composites,2017,36(13):972-987. doi: 10.1177/0731684417698758
    [19]
    CHEN B L, WANG L G. Experimental study of flexural behavior of splicing concrete-filled GFRP tubular composite members connected with steel bars[J]. Steel and Compo-site Structures,2015,18(5):1129-1144. doi: 10.12989/scs.2015.18.5.1129
    [20]
    李阳. GFRP管钢筋混凝土梁受力性能分析[D]. 大庆: 东北石油大学, 2013.

    LI Yang. Research on mechanical properties of the reinforced concrete filled GFRP tube beam[D]. Daqing: Northeast Petroleum University, 2013(in Chinese).
    [21]
    LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials,2003,17(6):471-489.
    [22]
    COLLINS M P, MITCHELL D. Prestressed concrete structures[M]. Canada: Response Publications, 1997.
    [23]
    FAM A Z, RIZKALLA S H. Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes[J]. ACI Structural Journal,2001,98(4):451-461.
    [24]
    钟善桐. 钢管混凝土结构[M]. 哈尔滨: 黑龙江科学技术出版社, 1994.

    ZHONG Shantong. The concrete-filled steel tubular structures[M]. Harbin: Heilongjiang Science and Technology Press, 1994(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (1414) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return