Volume 38 Issue 5
May  2021
Turn off MathJax
Article Contents
LIU Wenjun, YAN Jianlong, ZHOU Chuan, et al. Hygrothermal properties and micro morphology of graphene oxide modified carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1416-1425. doi: 10.13801/j.cnki.fhclxb.20200923.001
Citation: LIU Wenjun, YAN Jianlong, ZHOU Chuan, et al. Hygrothermal properties and micro morphology of graphene oxide modified carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1416-1425. doi: 10.13801/j.cnki.fhclxb.20200923.001

Hygrothermal properties and micro morphology of graphene oxide modified carbon fiber/epoxy resin composites

doi: 10.13801/j.cnki.fhclxb.20200923.001
  • Received Date: 2020-06-18
  • Accepted Date: 2020-08-30
  • Available Online: 2020-09-23
  • Publish Date: 2021-05-01
  • Graphene oxide (GO) modified carbon fiber/epoxy resin (CF/EP) composites were prepared by wet prepreg technology and molding process. The effects of GO on dynamic mechanical properties and interlaminar shear properties of the GO-CF/EP composites at room temperature and hygrothermal environment were studied. Micro morphology was used to analyze modification mechanism of the GO-CF/EP composites. The results show that when the addition amount of GO are 0.5% and 0.8%, respectively, the glass transition temperature (Tg) of the GO-CF/EP composites are significantly increased from 184.4℃ of the CF/EP composites to 197.7℃ and 199.5℃, respectively. After hygrothermal treatment, Tg retention rate of the GO-CF/EP composites is slightly lower than that of the CF/EP composites. The interlaminar shear strength of GO-CF/EP composite with GO content of 0.05% and GO-CF/EP composite with GO content of 0.1% are increased from 59.7 MPa of the CF/EP to 70.2 MPa and 72.2 MPa, respectively. The interlaminar shear strength after hygrothermal treatment of GO-CF/EP composite with GO content of 0.05% and GO-CF/EP composite with GO content of 0.1% are improved compared to the CF/EP composite. And the interlaminar shear strength retention rates of the GO-CF/EP composites before and after hygrothermal treatment are all lower than the CF/EP composite. Dynamic mechanical loss analysis of the composites shows that GO effectively improves the interface bonding between CF and EP matrix. Micro morphology shows that the existence of GO improves the ability of GO-CF/EP composites to resist crack growth.

     

  • loading
  • [1]
    王希晰, 曹茂盛. 特色研究报告: 低维电磁功能材料研究进展[J]. 表面技术, 2020, 49(2):12-28.

    WANG X X, CAO M S. Low-dimensional electromagnetic functional materials[J]. Surface Technology,2020,49(2):12-28(in Chinese).
    [2]
    疏金成, 曹茂盛. 石墨烯基电磁功能材料[J]. 表面技术, 2020, 49(2):29-40.

    SHU J C, CAO M S. Graphene-based electromagnetic functional materials[J]. Surface Technology,2020,49(2):29-40(in Chinese).
    [3]
    LEE D W, VALLADARES L D L S, SEO J W, et al. The structure of graphite oxide: Investigation of its surface chemical groups[J]. Journal of Physical Chemistry B,2010,114(17):5723-5728.
    [4]
    ADAK N C, CHHETRI S, MURMU N C, et al. Effect of thermally reduced graphene oxide on mechanical properties of woven carbon fiber/epoxy composite[C]//7th National Conference on Processing and Characterization of Materials. Rourkela:IOP Publishing Ltd., 2018, 338: 012015.
    [5]
    PATHAK A K, BORAH M, GUPTA A, et al. Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites[J]. Composites Science & Technology,2016,135:28-38.
    [6]
    胡小雨, 蒋秋冉, 魏毅, 等. 碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征[J]. 复合材料学报, 2018, 35(7):1691-1699.

    HU X Y, JIANG Q R, WEI Y, et al. Preparation and characterization of carbon fiber-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1691-1699(in Chinese).
    [7]
    BOTELHO E C, PARDINI L C, REZENDE M C. Hygrothermal effects on the shear properties of carbon fiber/epoxy composites[J]. Journal of Materials Science,2006,41(21):7111-7118.
    [8]
    JEDIDI J, JACQUEMIN F, VAUTRIN A. Accelerated hygrothermal cyclical tests for carbon/epoxy laminates[J]. Composites Part A: Applied Science and Manufacturing,2006,37(4):636-645.
    [9]
    KELLER M W, JELLISON B D, ELLISON T. Moisture effects on the thermal and creep performance of carbon fiber/epoxy composites for structural pipeline repair[J]. Composites Part B: Engineering,2013,45(1):1173-1180.
    [10]
    COSTA M L. Strength of hygrothermally conditioned polymer composites with voids[J]. Journal of Composite Materials,2005,39(21):1943-1961.
    [11]
    李敏, 张宝艳. 改性双马树脂/碳纤维复合材料体系耐湿热性能研究[J]. 热固性树脂, 2006, 21(5):25-27. doi: 10.3969/j.issn.1002-7432.2006.05.008

    LI M, ZHANG B Y. Study on the hydrothermal properties of a modified bismaleimide resin/carbon fiber composites[J]. Thermosetting Resin,2006,21(5):25-27(in Chinese). doi: 10.3969/j.issn.1002-7432.2006.05.008
    [12]
    KUMAR B G, SINGH R P, NAKAMURA T. Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation[J]. Journal of Composite Materials,2002,36(24):2713-2733.
    [13]
    HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. American Chemical Society,1958,208:1334-1339.
    [14]
    American Society for Testing and Materials. Standard test method for glass transition temperature (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA): ASTM D7028—07e1[S]. West Conshohocken: ASTM International, 2007.
    [15]
    中国国家标准化管理委员会. 聚合物基复合材料短梁剪切强度试验方法: GB/T 30969—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Test method for short-beam shear strength of polymer matrix composite materials: GB/T 30969—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [16]
    陈祥宝. 聚合物基复合材料手册(精)[M]. 北京: 化学工业出版社, 2004.

    CHEN X B. Handbook of polymer matrix composites[M]. Beijing: Chemical Industry Press, 2004(in Chinese).
    [17]
    RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition,2010,48(42):7752-7777.
    [18]
    胡玉明, 吴良义. 固化剂[M]. 北京: 化学工业出版社, 2004.

    HU Y M, WU L Y. Curing agent[M]. Beijing: Chemical Industry Press, 2004(in Chinese).
    [19]
    SHEN X J, PEI X Q, FU S Y, et al. Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content[J]. Polymer,2013,54(3):1234-1242.
    [20]
    代少伟, 李伟东, 邱虹, 等. 氧化石墨烯改性高温环氧树脂基碳纤维复合材料的热性能与力学性能[J]. 厦门大学学报(自然科学版), 2019, 58(3):324-332.

    DAI S W, LI W D, QIU H, et al. Thermal and mechanical properties of graphene oxide modified high temperature epoxy resin based carbon fiber composites[J]. Journal of Xiamen University (Natural Science),2019,58(3):324-332(in Chinese).
    [21]
    巩天琛. 湿热环境对CFRP层板性能影响及机理研究[D]. 天津: 中国民航大学, 2017.

    GONG T C. Influence of hygrothermal environments on properties and mechanism of CFRP laminates[D]. Tianjin: Civil Aviation University of China, 2017(in Chinese).
    [22]
    孙健明, 温磊, 李斌太, 等. 湿热对氰酸酯胶粘剂工艺及力学特性影响的研究[J]. 中国胶粘剂, 2017, 26(12):17-20.

    SUN J M, WEN L, LI B T, et al. Study on influences of heat moisture treatment on process and mechanical properties of cyanate ester adhesives[J]. China Adhesives,2017,26(12):17-20(in Chinese).
    [23]
    XIAO G Z, SHANAHAN M E R. Irreversible effects of hygrothermal aging on DGEBA/DDA epoxy resin[J]. Journal of Applied Polymer Science,1998,69(2):363-369.
    [24]
    吕新颖, 江龙, 闫亮, 等. 碳纤维复合材料湿热性能研究进展[J]. 玻璃钢/复合材料, 2009(3):76-80.

    LV X Y, JIANG L, YAN L, et al. Hydrothermal properties of carbon fiber reinforced plastics[J]. Fiber Reinforced Plastics/Composites,2009(3):76-80(in Chinese).
    [25]
    刘淑峰, 程小全, 包建文. 湿热环境对树脂基复合材料性能影响的分析[J]. 高分子材料科学与工程, 2014, 30(9):183-190.

    LIU S F, CHENG X Q, BAO J W. Hygrothermal effects on properties of composite materials[J]. Polymer Materials Science & Engineering,2014,30(9):183-190(in Chinese).
    [26]
    WANG C C, GE H Y, LIU H S, et al. Properties of carbon fiber and composites modified with different-sized graphene oxide sheets[J]. Polymer Composites,2016,37(9):2719-2726.
    [27]
    过梅丽. 高聚物与复合材料的动态力学热分析[M]. 化学工业出版社, 2002.

    GUO M L. Dynamic mechanical analysis of polymer and composites[M]. Beijing: Chemical Industry Publishing House, 2002.
    [28]
    ZHANG X, FAN X, YAN C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials & Interfaces,2012,4(3):1543-1552.
    [29]
    HAN X, ZHAO Y, SUN J M, et al. Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites[J]. New Carbon Materials,2017,32(1):48-55.
    [30]
    曲原. CFRP材料湿热老化性能及其尺寸加速效应试验与分析[D]. 大连: 大连理工大学, 2014.

    QU Y. Effect of sample thickness on hygrothermal ageing of expoxy resin and CFRP laminates[D]. Dalian: Dalian University of Technology, 2014(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (1205) PDF downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return