Volume 38 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
CHEN Bo, FANG Yiqun, SI Yueyue, et al. Flame retardancy of ammonium polyphosphate-chitosan/boron nitride on plywood surface via layer-by-layer self-assembly method[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1252-1261. doi: 10.13801/j.cnki.fhclxb.20200824.002
Citation: CHEN Bo, FANG Yiqun, SI Yueyue, et al. Flame retardancy of ammonium polyphosphate-chitosan/boron nitride on plywood surface via layer-by-layer self-assembly method[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1252-1261. doi: 10.13801/j.cnki.fhclxb.20200824.002

Flame retardancy of ammonium polyphosphate-chitosan/boron nitride on plywood surface via layer-by-layer self-assembly method

doi: 10.13801/j.cnki.fhclxb.20200824.002
  • Received Date: 2020-05-25
  • Accepted Date: 2020-08-04
  • Available Online: 2020-08-24
  • Publish Date: 2021-04-08
  • In order to endow poplar plywood with certain flame retardant properties, ammonium polyphosphate-chitosan/boron nitride (APP-CS/BN) were choosed as the flame retardant coatings, and were deposited on the plywood through layer by layer self-assembly method. The results of FTIR and SEM show that APP-CS/BN coatings are assembled on the surface of plywood to form a membrane structure, and the assembled membranes are evenly distributed on the surface of the material. Cone calorimeter (CONE) combustion tests show that APP-CS/BN self-assembled coatings effectively prolong the ignition time (TTI), reduce the heat release rate (HRR) and total heat release (THR) of the plywood, while increase the char residue which formed after combustion of the material. Compared to untreated plywoods, the ignition time of self-assembled plywoods with 15, 20, 25 APP-CS/BN layers increase by 100%, 105% and 125%, respectively; Pk-HRR is decreased by 10.15%, 22.34% and 31.82%; THR is decreased by 2.89%, 13.68% and 15.32%. The char formation rates of untreated plywood, self-assembled plywoods with 15, 20, 25 APP-CS/BN layers are 18.55%, 24.07%, 26.04% and 27.65%, respectively. In summary, the poplar plywood exhibits good flame retardant properties via layer-by-layer self-assembly flame retardant treatment. However, when the number of self-assembly layers is from 20 to 25, the increment amplitude of flame retardancy of plywood becomes slower. In this study, the suitable self-assembly coatings are 20-25 layers.

     

  • loading
  • [1]
    胡景娟, 程瑞香, 王清文, 等. 杨木胶合板阻燃处理工艺及燃烧性能[J]. 木材加工机械, 2008, 2:14-18. doi: 10.3969/j.issn.1001-036X.2008.02.005

    HU Jingjuan, CHENG Ruixiang, WANG Qingwen, et al. Fire retardant impregnating process and combustion properties of poplar plywood[J]. Wood Processing Machinery,2008,2:14-18(in Chinese). doi: 10.3969/j.issn.1001-036X.2008.02.005
    [2]
    ZHAO G L, YU Z L. Recent research and development advances of wood science and technology in China: Impacts of funding support from national natural science foundation of China[J]. Wood Science & Technology,2016,50(1):193-215.
    [3]
    GU J W, ZHANG G C, DONG S L, et al. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings[J]. Surface and Coatings Technology,2007,201(18):7835-7841. doi: 10.1016/j.surfcoat.2007.03.020
    [4]
    LIU Y Z, FU Y C, YU H P, et al. Process of in situ forming well-aligned zinc oxide nanorod arrays on wood substrate using a two-step bottom-up method[J]. Journal of Colloid and Interface Science,2013,407(10):116-121.
    [5]
    刘迎涛, 李坚, 王清文. FRW阻燃桦木胶合板的性能研究[J]. 林产工业, 2004, 31(3):22-24. doi: 10.3969/j.issn.1001-5299.2004.03.006

    LIU Yingtao, LI Jian, WANG Qingwen. Study on the properties of FRW fire-retardant plywood of betula[J]. China Forest Products Industry,2004,31(3):22-24(in Chinese). doi: 10.3969/j.issn.1001-5299.2004.03.006
    [6]
    曾思华, 韦春, 刘红霞, 等. 剑麻纤维素微晶(壳聚糖/聚对苯乙烯磺酸钠)层层自组装及其复合材料的热性能和阻燃性能[J]. 高分子材料科学与工程, 2014, 30(7):76-79.

    ZENG Sihua, WEI Chun, LIU Hongxia, et al. Construction of sisal fiber cellulose microcrystal/chitosan/polystyrene sulfonatevia layer-by-layer assembly and flame retardant properties of the composites[J]. Polymer Materials Science and Engineering,2014,30(7):76-79(in Chinese).
    [7]
    TANG L, LI X, DU D, et al. Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly[J]. Progress in Natural Science Materials International,2012,22(4):341-346. doi: 10.1016/j.pnsc.2012.06.005
    [8]
    GERO D. Fuzzy nanoassemblies: Toward layered polymeric multicomposites[J]. Science,1997,277(5330):1232-1237. doi: 10.1126/science.277.5330.1232
    [9]
    黄孝华, 牛红超, 刘婵娟, 等. (壳聚糖-聚磷酸铵)/剑麻纤维素微晶层层自组装复合材料的热性能和阻燃性能[J]. 复合材料学报, 2020, 37(2):260-266.

    HUANG Xiaohua, NIU Hongchao, LIU Chanjuan, et al. Thermal and flame retardant properties of (chitosan-ammonium polyphosphate)/sisal fiber cellulose microcyrstal layer-by-layer self assembly composite[J]. Acta Materiae Composite Sinica,2020,37(2):260-266(in Chinese).
    [10]
    RENNECKAR S, ZHOU Y. Nanoscale coatings on wood: Polyelectrolyte adsorption and layer-by-layer assembled film formation[J]. ACS Applied Materials & Interfaces,2009,1(3):559-566. doi: 10.1021/am800119q
    [11]
    张国正, 于海鹏, 刘一星. 木材表面组装PEI/纳米ZrO2/FAS复合薄膜及其性能[J]. 林业工程学报, 2017, 2(3):83-89.

    ZHANG Guozheng, YU Haipeng, LIU Yixing. Performances of PEI/nano-ZrO2/FAS composite coatings on wood surface via llayer-by-layer assemble method[J]. Journal of Forestry Engineering,2017,2(3):83-89(in Chinese).
    [12]
    LIN Z Y, RENNECKAR S. Nanocomposite-based lignocellulosic fibers 2: Layer-by-layer modification of wood fibers for reinforcement in thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing,2011,42(1):84-91. doi: 10.1016/j.compositesa.2010.10.011
    [13]
    ISO. Rraction-to-fire tests-Heat relase smoke production and mass loss rate-Part 1: Heat relase rate (cone calorimeter method): ISO 5660-2002[S]. Geneva: ISO, 2002.
    [14]
    KANNAN K P, GEORGE T S, GURUK S S. Extraction, purification and characterization of chitosan from endophytic fungi isolated from medicinal plants[J]. World Journal of Science and Technology,2011,1(4):43-48.
    [15]
    郜玉楠, 周历涛, 王静, 等. 壳聚糖/沸石分子筛复合吸附颗粒的制备与性能[J]. 复合材料学报, 2019, 36(3):701-707.

    GAO Yunan, ZHOU Litao, WANG Jing, et al. Preparation and performance of chitosan/zeolite molecular sieve composite adsorbed particles[J]. Acta Materiae Composite Sinica,2019,36(3):701-707(in Chinese).
    [16]
    WU G J, LI J M, CUI Y D, et al. Studies on the hardness of chitosan-polyvinyl alcohol hydrogel[J]. Materials Review,2006,20(5):139-141.
    [17]
    WENG Q H, WANG B J, WANG X B, et al. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery[J]. ACS Nano,2014,8(6):6123-6130. doi: 10.1021/nn5014808
    [18]
    李斌, 王建祺. 聚合物材料燃烧性和阻燃性的评价-锥型量热仪(CONE)法[J]. 高分子材料科学与工程, 1998(5):15-19. doi: 10.3321/j.issn:1000-7555.1998.05.004

    LI Bin, WANG Jianqi. Utilization of cone calorimeter for the appraisal of the flammability and flame retardancy of polymer materials[J]. Polymer Materials Science and Engineering,1998(5):15-19(in Chinese). doi: 10.3321/j.issn:1000-7555.1998.05.004
    [19]
    MA X X, WU Y Z, ZHU H L. The fire-retardant properties of the melamine-modified urea-formaldehyde resins mixed with ammonium polyphosphate[J]. Journal of Wood Science,2013,59(5):419-425. doi: 10.1007/s10086-013-1350-6
    [20]
    张军, 纪奎江, 夏延致. 聚合物燃烧与阻燃技术[M]. 北京: 化学工业出版社, 2005.

    ZHANG Jun, JI Kuijiang, XIA Yanzhi. Polymer combustion and flame retardant technology[M]. Beijing: Chemical Industry Press, 2005(in Chinese).
    [21]
    李坚, 王清文, 李淑君, 等. 用CONE法研究木材阻燃剂FRW的阻燃性能[J]. 林业科学, 2002, 38(5):108-114. doi: 10.3321/j.issn:1001-7488.2002.05.018

    LI Jian, WANG Qingwen, LI Shujun, et al. A Study on the flame retardancy of FRW fire retardant for wood by CONE calorimeter[J]. Scientia Silvae Sinicae,2002,38(5):108-114(in Chinese). doi: 10.3321/j.issn:1001-7488.2002.05.018
    [22]
    房轶群, 王清文, 宋永明, 等. 聚磷酸铵-淀粉对木粉/聚苯乙烯复合材料的阻燃作用[J]. 高分子材料科学与工程, 2008, 24(11):83-86. doi: 10.3321/j.issn:1000-7555.2008.11.022

    FANG Yiqun, WANG Qingwen, SONG Yongming, et al. The fire retardancy of wood flour/PS composites treated with APP-Starch[J]. Polymer Materials Science and Engineering,2008,24(11):83-86(in Chinese). doi: 10.3321/j.issn:1000-7555.2008.11.022
    [23]
    夏燎原, 胡云楚, 吴义强, 等. 介孔SiO2-APP复合阻燃剂的制备及其对木材的阻燃抑烟作用[J]. 中南林业科技大学学报, 2012, 32(1):9-13. doi: 10.3969/j.issn.1673-923X.2012.01.002

    XIA Liaoyuan, HU Yunchu, WU Yiqiang, et al. Preparation of mesoporous SiO2-APP composite flame retardant and effects of flame retardant and smoke suppression on wood[J]. Journal of the Central South University of Forestry and Technology,2012,32(1):9-13(in Chinese). doi: 10.3969/j.issn.1673-923X.2012.01.002
    [24]
    YUAN L P, FENG S Y, HU Y C, et al. Effect of char sulfonic acid and ammonium polyphosphate on flame retardancy and thermal properties of epoxy resin and polyamide composites[J]. Journal of Fire Sciences,2017,35(6):521-534. doi: 10.1177/0734904117720121
    [25]
    TIAN N N, WEN X, JIANG Z W, et al. Synergistic effect between a novel char forming agent and ammonium polyphosphate on flame retardancy and thermal properties of polypropylene[J]. Industrial and Engineering Chemistry Research,2013,52(32):10905-10915. doi: 10.1021/ie401058u
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (1261) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return