Volume 37 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
JING Rong, ZHANG Ruitao, MENG Yuchen, et al. Parameters in process of pultrusion of continuous glass fiber/polypropylene thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2782-2788. doi: 10.13801/j.cnki.fhclxb.20200302.003
Citation: JING Rong, ZHANG Ruitao, MENG Yuchen, et al. Parameters in process of pultrusion of continuous glass fiber/polypropylene thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2782-2788. doi: 10.13801/j.cnki.fhclxb.20200302.003

Parameters in process of pultrusion of continuous glass fiber/polypropylene thermoplastic composites

doi: 10.13801/j.cnki.fhclxb.20200302.003
  • Received Date: 2019-12-18
  • Accepted Date: 2020-02-08
  • Available Online: 2020-03-03
  • Publish Date: 2020-11-15
  • The continuous glass fiber/polypropylene (GF/PP) composites were prepared by thermoplastic pultrusion using GF/PP commingled yarns. The effect of mold temperature and pulling speed on the centraline temperature of GF/PP composites was studied. Based on Fourier law, the transient heat transfer within mold cavity in pultrusion process was analyzed. The process parameter matrix was established. The centraline temperature variation of GF/PP composites under the conditions of different mold temperatures and pulling speeds was predicted using finite element numerical calculation. The combination of process parameter for certain mold structure was optimized. The flexural modulus of PP/GF composites obtained at different temperatures and pulling speeds was tested and the sections were observed. The results show that the pultrusion speed should not exceed 350 mm/min, while the mold melt zone temperature should be set higher than 180℃ in the pultrusion process of GF/PP commingled yarns; the optimized process parameter for best mechanical properties of GF/PP composites is obtained at 150℃-230℃-50℃ temperature and 100 mm/min pulling speed. The pultrusion speed is more important than the mold melt zone temperature in pultrusion process of GF/PP commingled yarns.

     

  • loading
  • [1]
    张宝艳, 边俊形, 陈祥宝, 等. 用共编纱制备热塑性复合材料[J]. 复合材料学报, 2003, 20(3):17-21. doi: 10.3321/j.issn:1000-3851.2003.03.004

    ZHANG Baoyan, BIAN Junxing, CHEN Xiangbao, et al. Thermoplastic composites fabricated from co-braided[J]. Acta Materiae Compositae Sinica,2003,20(3):17-21(in Chinese). doi: 10.3321/j.issn:1000-3851.2003.03.004
    [2]
    陈吉平, 李岩, 刘卫平, 等. 连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状[J]. 复合材料学报, 2019, 36(4):784-794.

    CHEN Jiping, LI Yan, LIU Weiping, et al. Development of AFP in-situ consolidation technology on continuous fiber reinforced thermoplastic matrix composites in aviation[J]. Acta Materiae Compositae Sinica,2019,36(4):784-794(in Chinese).
    [3]
    李静雯, 张博明, 孙义亮, 等. 不同铺层方式下连续玻璃纤维/聚丙烯复合材料波纹夹芯板的力学性能[J]. 复合材料学报, 2019, 36(5):1074-1082.

    LI Jingwen, ZHANG Boming, SUN Yiliang, et al. Mechanical properties of continuous glass fiber/polypropylene corrugated sandwich boards under different laminates[J]. Acta Materiae Compositae Sinica,2019,36(5):1074-1082(in Chinese).
    [4]
    SURATNO B R, YE L, MAI Y W. Simulation of temperature and curing profiles in pultruded composite rods[J]. Composites Science and Technology,1998,58(2):191-197. doi: 10.1016/S0266-3538(97)00132-2
    [5]
    KLINKMÜLLER V, UM M K, STEFFENS M, et al. A new model for impregnation mechanisms in different GF/PP commingled yarns[J]. Applied Composite Materials,1994,1(5):351-371.
    [6]
    KIM D H, LEE W I, FRIEDRICH K. A model for a thermoplastic pultrusion process using commingled yarns[J]. Composites Science and Technology,2001,61(8):1065-1077. doi: 10.1016/S0266-3538(00)00234-7
    [7]
    CARLSSON A, ÅSTRÖM B T. Modeling of heat transfer and crystallization kinetics in thermoplastic composites manufacturing: Pultrusion[J]. Polymer Composites,1998,19(4):352-359. doi: 10.1002/pc.10108
    [8]
    TOMIĆ N Z, VUKSANOVIĆ M, MEĐO B, et al. Optimizing the thermal gradient and the pulling speed in a thermoplastic pultrusion process of PET/E glass fibers using finite element method[J]. Metallurgical and Materials Engineering,2018,24(2):103-112. doi: 10.30544/367
    [9]
    DUHOVIC M, ASWALE P, SCHOMMER D, et al. Development of a process simulation model of a pultrusion line[C]//Proceedings of 12th European LS-DYNA Users Conference. Koblenz: DYNAmore GmbH, 2019.
    [10]
    LAROCK J A, HAHN H T, EVANS D J. Pultrusion processes for thermoplastic composites[J]. Journal of Thermoplastic Composite Materials,1989,2(3):216-229. doi: 10.1177/089270578900200304
    [11]
    张纪奎, 关志东, 郦正能. 热固性复合材料固化过程中温度场的三维有限元分析[J]. 复合材料学报, 2006, 23(2):175-179. doi: 10.3321/j.issn:1000-3851.2006.02.030

    ZHANG Jikui, GUAN Zhidong, LI Zhengneng. Three-dimensional finite element analysis for the temperature field of thermoset composites during cure process[J]. Acta Materiae Compositae Sinica,2006,23(2):175-179(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.02.030
    [12]
    ZHOU F, KUENTZER N, SIMACEK P, et al. Analytic characterization of the permeability of dual-scale fibrous porous media[J]. Composites Science and Technology,2006,66(15):2795-2803. doi: 10.1016/j.compscitech.2006.02.025
    [13]
    MICHAUD V, MÅNSON J A E. Impregnation of compressible fiber mats with a thermoplastic resin Part Ⅰ: Theory[J]. Journal of Composite Materials,2001,35(13):1150-1173. doi: 10.1177/002199801772662271
    [14]
    SORBIE K S. Depleted layer effects in polymer flow through porous media Ⅰ: Single capillary calculations[J]. Journal of Colloid and Interface Science,1990,139(2):299-314. doi: 10.1016/0021-9797(90)90103-U
    [15]
    BIRD R B, ARMSTRONG R C, HASSAGER O. Dynamics of polymeric liquids Vol. 1: Fluid mechanics[M]. 2nd Edition. New York: Wiley, 1987.
    [16]
    中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法 : GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fibre-reinforced plastic composites: Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [17]
    FRIEDRICH K. Commingled yarns and their use for composites[M]. Dordrecht: Kluwer Publishers, 1999.
    [18]
    LIU L, ZHANG B M, WANG D F, et al. Effects of cure cycles on void content and mechanical properties of composite laminates[J]. Composite Structures,2006,73(3):303-309. doi: 10.1016/j.compstruct.2005.02.001
    [19]
    刘春太, 申长雨. 利用TAGUCHI方法优化纤维增强PA66注塑熔接线拉伸性能[J]. 复合材料学报, 2004, 21(5): 68-73.

    LIU Chuntai, SHEN Changyu. Using TAGUCHI methods to optimize the weld line strength in injection molded short-fiber reinforced PA66[J]. Acta Materiae Composite Sinica, 2004, 21(5): 68-73 (in Chinese).
    [20]
    MCCABE J F, OGDEN A R. The relationship between porosity, compressive fatigue limit and wear in composite resin restorative materials[J]. Dental Materials,1987,3(1):9-12. doi: 10.1016/S0109-5641(87)80053-2
    [21]
    马雯, 刘福顺. 玻璃纤维复合材料孔隙率对超声衰减系数及力学性能的影响[J]. 复合材料学报, 2012, 29(5):69-75.

    MA Wen, LIU Fushun. Effect of porosity on the attenuation coefficient and mechanical properties of glass fiber reinforced composites[J]. Acta Materiae Compositae Sinica,2012,29(5):69-75(in Chinese).
    [22]
    刘玲, 路明坤, 张博明, 等. 孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响[J]. 复合材料学报, 2004, 21(5):116-121. doi: 10.3321/j.issn:1000-3851.2004.05.022

    LIU Ling, LU Mingkun, ZHANG Boming, et al. Effects of porosity on the ultrasonic absorption coefficient and mechanical strength of carbon/epoxy composites[J]. Acta Materiae Compositae Sinica,2004,21(5):116-121(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.05.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (1557) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return