Volume 38 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
OUYANG Zeyu, WANG Keke, RAO Qiong, et al. Preparation and properties of thermally conductive grapheme nanoplates/(polyetherketone cardo-epoxy) composites with double percolation structures[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 722-731. doi: 10.13801/j.cnki.fhclxb.20200806.003
Citation: OUYANG Zeyu, WANG Keke, RAO Qiong, et al. Preparation and properties of thermally conductive grapheme nanoplates/(polyetherketone cardo-epoxy) composites with double percolation structures[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 722-731. doi: 10.13801/j.cnki.fhclxb.20200806.003

Preparation and properties of thermally conductive grapheme nanoplates/(polyetherketone cardo-epoxy) composites with double percolation structures

doi: 10.13801/j.cnki.fhclxb.20200806.003
  • Received Date: 2020-05-25
  • Accepted Date: 2020-07-14
  • Available Online: 2020-08-06
  • Publish Date: 2021-03-15
  • To improve the thermal conductivity of epoxy (EP) with a lower thermally conductive filler content, graphene nanoplates/(polyetherketone cardo-EP) (GNP/(PEK-C-EP)) composites were prepared by the solution method. The selective distribution of GNP was predicted by calculation based on contact angle measurements, and the effects of GNP and PEK-C contents on the microstructures and thermal conductivities of GNP/(PEK-C-EP) composites were investigated by SEM and laser flash method. The results show that double percolation structures are formed in GNP/(PEK-C-EP) composites as the content of PEK-C reaches 20wt%, where GNPs are selectively distributed in PEK-C to build continuous heat conduction paths. For GNP/EP composites, it reaches the highest thermal conductivity of 0.375 W(m·K)−1 at 1wt% GNP. While for GNP/(PEK-C-EP) composites, the content of 0.5wt% GNP reaches highest thermal conductivity of 0.371 W(m·K)−1, which is 48% higher than that of GNP/EP composites at 0.5wt% GNP content and basically the same as that of GNP/EP composites at 1wt% GNP. It indicates that the filler content of GNP/(PEK-C-EP) composites is reduced by 50% owing to the double percolation effect. In addition, the glass transition temperatures, thermal stability and coefficients of thermal expansion of pure EP and GNP/(PEK-C-EP) composites were compared. The results show that the GNP/(PEK-C-EP) composites are superior to pure EP in thermal properties.

     

  • loading
  • [1]
    LIU S, CHEVALI V S, XU Z G, et al. A review of extending performance of epoxy resins using carbon nanomaterials[J]. Composites Part B: Engineering,2018,136:197-214. doi: 10.1016/j.compositesb.2017.08.020
    [2]
    GUO Y Q, RUAN K P, SHI X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology,2020,193:108134. doi: 10.1016/j.compscitech.2020.108134
    [3]
    CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. doi: 10.1016/j.progpolymsci.2016.03.001
    [4]
    ZHANG R H, SHI X T, TANG L, et al. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers[J]. Chinese Journal of Polymer Science,2020,38(7):730-739. doi: 10.1007/s10118-020-2391-0
    [5]
    钟洨, 孟旭东, 张睿涵, 等. 改性纳米BN/甲基乙烯基硅橡胶导热复合材料的制备[J]. 复合材料学报, 2019, 36(11):2644-2650.

    ZHONG Xiao, MENG Xudong, ZHANG Ruihan, et al. Preparation of functionalized nano BN/methyl vinyl silicone rubber thermally conductive composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2644-2650(in Chinese).
    [6]
    LEE E S, LEE S M, SHANEFIELD D J, et al. Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin[J]. Journal of the American Ceramic Society,2008,91(4):1169-1174. doi: 10.1111/j.1551-2916.2008.02247.x
    [7]
    SUMITA M, SAKATA K, ASAI S, et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black[J]. Polymer Bulletin,1991,25(2):265-271. doi: 10.1007/BF00310802
    [8]
    BONNET P, SIREUDE D, GARNIER B, et al. Thermal properties and percolation in carbon nanotube-polymer composites[J]. Applied Physics Letters,2007,91(20):201910.
    [9]
    CHEN J, CUI X, SUI K, et al. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure[J]. Composites Science and Technology,2017,140:99-105. doi: 10.1016/j.compscitech.2016.12.029
    [10]
    LIU W, YANG Y, NIE M. Constructing a double-percolated conductive network in a carbon nanotube/polymer-based flexible semiconducting composite[J]. Composites Science and Technology,2018,154:45-52. doi: 10.1016/j.compscitech.2017.11.003
    [11]
    QI X Y, YAN D, JIANG Z, et al. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content[J]. ACS Applied Materials & Interfaces,2011,3(8):3130-3133. doi: 10.1021/am200628c
    [12]
    HUANG J, ZHU Y, XU L, et al. Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend[J]. Composites Science and Technology,2016,129:160-165. doi: 10.1016/j.compscitech.2016.04.029
    [13]
    MA C G, XI D Y, LIU M. Epoxy resin/polyetherimide/carbon black conductive polymer composites with a double percolation structure by reaction-induced phase separation[J]. Journal of Composite Materials,2013,47(9):1153-1160. doi: 10.1177/0021998312446180
    [14]
    ZHANG Y, CHEN F, LI Z, et al. Ubiquitous nature of the three-layered structure formation in the asymmetric phase separation of the epoxy/thermoplastic blends[J]. Polymer,2012,53(2):588-594. doi: 10.1016/j.polymer.2011.11.051
    [15]
    ZHANG J, GUO Q, FOX B L. Study on thermoplastic-modified multifunctional epoxies: Influence of heating rate on cure behaviour and phase separation[J]. Composites Science and Technology,2009,69(7-8):1172-1179. doi: 10.1016/j.compscitech.2009.02.016
    [16]
    ASTM International. Standard test method for thermal diffusivity of solids by the flash method: ASTM E1461—01[S]. West Conshohocken: ASTM International, 2001.
    [17]
    YANG X T, LIANG C B, MA T B, et al. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication methods[J]. Advanced Composites and Hybrid Materials,2018,1(2):207-230. doi: 10.1007/s42114-018-0031-8
    [18]
    CUI L, ZHANG Y, ZHANG Y, et al. Electrical properties and conductive mechanisms of immiscible polypropylene/Novolac blends filled with carbon black[J]. European Polymer Journal,2007,43(12):5097-5106. doi: 10.1016/j.eurpolymj.2007.08.023
    [19]
    WU S. Polymer interface and adhesion[M]. New York: CRC Press, 1982.
    [20]
    ZHANG J, NIU H, ZHOU J, et al. Synergistic effects of PEK-C/VGCNF composite nanofibres on a trifunctional epoxy resin[J]. Composites Science and Technology,2011,71(8):1060-1067. doi: 10.1016/j.compscitech.2011.03.008
    [21]
    ZHENG N, SUN W, LIU H Y, et al. Effects of carboxylated carbon nanotubes on the phase separation behaviour and fracture-mechanical properties of an epoxy/polysulfone blend[J]. Composites Science and Technology,2018,159(3):180-188.
    [22]
    KWON S Y, KWON I M, KIM Y G, et al. A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena[J]. Carbon,2013,55(2):285-290.
    [23]
    石刚, 张鉴炜, 雷博文, 等. 石墨烯微片尺寸对石墨烯纸热导率的影响[J]. 国防科技大学学报, 2016, 38(3):112-116. doi: 10.11887/j.cn.201603019

    SHI Gang, ZHANG Jianwei, LEI Bowen, et al. Effects of graphene sheets size on thermal conductivity of graphene paper[J]. Journal of National University of Defense Technology,2016,38(3):112-116(in Chinese). doi: 10.11887/j.cn.201603019
    [24]
    LIU W, XU K, WANG C, et al. Carbon nanofibers reinforced soy polyol-based polyurethane nanocomposites[J]. Journal of Thermal Analysis and Calorimetry,2016,123(3):2459-2468. doi: 10.1007/s10973-015-4690-1
    [25]
    SUN Y, ZHANG Y, XU K, et al. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes[J]. Journal of Applied Polymer Science,2015,132(12):41694.
    [26]
    张昊明, 赵永涛, 张红松, 等. 热压烧结镀Cr碳纤维/Cu复合材料的制备及热性能[J]. 复合材料学报, 2018, 35(9):2481-2487.

    ZHANG Haoming, ZHAO Yongtao, ZHANG Hongsong, et al. Fabrication and thermal properties of hot press sintered Cr-coated carbon fiber/Cu composites[J]. Acta Materiae Compositae Sinica,2018,35(9):2481-2487(in Chinese).
    [27]
    王菲菲, 王志鹏, 王红华, 等. 主链含N-烷基咔唑环结构聚芳醚酮的性能表征[J]. 应用化学, 2015, 32(4):379-385.

    WANG Feifei, WANG Zhipeng, WANG Honghua, et al. Properties of poly(arylene ether ketone)s containing N-alkylcarbazole in main chains[J]. Chinese Journal of Applied Chemistry,2015,32(4):379-385(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (1707) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return