Volume 37 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
ZHANG Ronghua, SHI Keyu, LI Shuo, et al. Discrete conductivity modeling method for plain weave carbon fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3119-3127. doi: 10.13801/j.cnki.fhclxb.20200327.001
Citation: ZHANG Ronghua, SHI Keyu, LI Shuo, et al. Discrete conductivity modeling method for plain weave carbon fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3119-3127. doi: 10.13801/j.cnki.fhclxb.20200327.001

Discrete conductivity modeling method for plain weave carbon fiber reinforced resin composites

doi: 10.13801/j.cnki.fhclxb.20200327.001
  • Received Date: 2020-02-04
  • Accepted Date: 2020-03-16
  • Available Online: 2020-03-27
  • Publish Date: 2020-12-15
  • The electrical impedance distribution of carbon fiber reinforced resin composites (CFRP) with weaving technology has the characteristics of anisotropy, heterogeneity and complex geometric structure. Establishing the electrical impedance distribution model is the key joint to obtain the defect and fatigue damage information of CFRP in the braiding process by using electromagnetic eddy current nondestructive testing technology. Based on the theory of electrical impedance tensor modeling, the method of characterizing the electrical characteristics of the multi-layer braided structure CFRP two-dimensional plane was established, and a simplified electrical impedance distribution model of the braided CFRP was established, thereby realizing the accurate and fast finite element analysis of the electromagnetic properties of the braided CFRP. Based on the finite element simulation, the electromagnetic nondestructive testing of plain weave CFRP was designed by designing a dual-air rotating coil electromagnetic sensor. The polar coordinate chart of the impedance was used to describe the impedance change trend of the measured material in different directions. The correctness of the finite element modeling was proved by experiment. Finally, the proposed modeling method was used to simulate the detection effect of the double air rotating coil sensor on the structural defects and cyclic load fatigue of the plain weave CFRP.

     

  • loading
  • [1]
    韩帅, 段跃新, 李超, 等. 不同针织结构经编碳纤维复合材料弯曲性能[J]. 复合材料学报, 2011, 28(5):52-57.

    HAN Shuai, DUAN Yuexin, LI Chao, et al. Bending properties of non-crimp stitched carbon fabric reinforced composites of different knit patte[J]. Acta Materiae Compositae Sinica,2011,28(5):52-57(in Chinese).
    [2]
    吴良义. 先进复合材料的应用扩展: 航空、航天和民用航空先进复合材料应用技术和市场预测[J]. 化工新型材料, 2012, 40(1):4-9, 91. doi: 10.3969/j.issn.1006-3536.2012.01.002

    WU Liangyi. The applcation extend of advanced compo-site materials: Technology markets of ACM application in aeronutics, astrnautics and civil aviation[J]. New Chem-ical Materials,2012,40(1):4-9, 91(in Chinese). doi: 10.3969/j.issn.1006-3536.2012.01.002
    [3]
    王冰佳, 黄强, 呼慧. 复合材料及碳纤维在风力机叶片中的应用现状[J]. 电站系统工程, 2019, 35(3):43-45.

    WANG Bingjia, HUANG Qiang, HU Hui. Application status and development of wind power blade carbon fiber composites[J]. Power System Engineering,2019,35(3):43-45(in Chinese).
    [4]
    罗栋. 碳纤维复合材料在汽车、体育用品领域的应用[J]. 合成材料老化与应用, 2016, 45(2):91-94. doi: 10.3969/j.issn.1671-5381.2016.02.021

    LUO Dong. Application of carbon fiber com-posite material in the field of automotive and sports goods[J]. Synthetic Material Aging and Applation,2016,45(2):91-94(in Chinese). doi: 10.3969/j.issn.1671-5381.2016.02.021
    [5]
    林刚. 2018全球碳纤维复合材料市场报告[J]. 纺织科学研究, 2019(7):52-71.

    LIN Gang. Global carbon fiber composites market report 2018[J]. Textile Science Research,2019(7):52-71(in Chinese).
    [6]
    孙旋, 童明波, 陈智, 等. 碳纤维织物布层压复合材料湿热环境疲劳后剩余压缩强度[J]. 复合材料学报, 2016, 33(3):535-544.

    SUN Xuan, TONG Mingbo, CHEN Zhi, et al. Residual compressive strength after fatigue of carbon fiber fabric composite laminates in hydrotherm[J]. Acta Materiae Compo-sitae Sinica,2016,33(3):535-544(in Chinese).
    [7]
    GARNIER C, PASTOR M L, EYMA F, et al. The detection of aeronautical defects in situ on composite structures using non destructive testing[J]. Composite structures,2011,93(5):1328-1336. doi: 10.1016/j.compstruct.2010.10.017
    [8]
    LANGE R, MOOK G. Structural analysis of CFRP using eddy current methods[J]. NDT & E International,1994,27(5):241-248.
    [9]
    MENANA H, FÉLIACHI M. Modeling the response of a rotating eddy current sensor for the characterization of carbon fiber reinforced composites[J]. The European Physical Journal-Applied Physics,2010,52(2):1-9.
    [10]
    MENANA H, FELIACHI M. An integro-differential model for 3-D eddy current computation in carbon fiber reinforced polymer composites[J]. IEEE Transactions on Magnetics,2010,47(4):756-763.
    [11]
    CAO M S, WANG X X, ZHANG M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials[J]. Advanced Functional Materials,2019,29(25):1807398. doi: 10.1002/adfm.201807398
    [12]
    CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon,2010,48(3):788-796. doi: 10.1016/j.carbon.2009.10.028
    [13]
    蔡永珠, 何朋, 疏金成, 等. 二维过渡金属碳化物的结构、电磁特性及微波吸收性能[J]. 黑龙江大学自然科学学报, 2019, 36(1):47-60.

    CAI Yongzhu, HE Peng, SHU Jincheng, et al. Structure, electromagnetic properties and microwave absorption performance of two-dimensional transition metal carbides[J]. Journal of Natural Science of Heilongjiang University,2019,36(1):47-60(in Chinese).
    [14]
    CHENG J, JI H, QIU J, et al. Role of interlaminar interface on bulk conductivity and electrical anisotropy of CFRP laminates measured by eddy current method[J]. NDT & E International,2014,68:1-12.
    [15]
    YIN W, WITHERS P J, SHARMA U, et al. Noncontact characterization of carbon-fiber-reinforced plastics using multifrequency eddy current sensors[J]. IEEE Transactions on Instrumentation and Measurement,2008,58(3):738-743.
    [16]
    BENSAID S, TRICHET D, FOULADGAR J. Optimal design of a rotating eddy-current probe—Application to characterization of anisotropic conductive materials[J]. IEEE Transactions on Magnetics,2015,51(3):1-4.
    [17]
    程军, 杨继全, 裘进浩, 等. 基于涡流成像的碳纤维增强树脂基复合材料细观结构可视化[J]. 复合材料学报, 2018, 35(8):2074-2083.

    CHENG Jun, YANG Jiquan, QIU Jinhao, et al. Visualization of meso-structure of carbon fiber reinforced polymer based on eddy current imaging[J]. Acta Materiae Compo-sitae Sinica,2018,35(8):2074-2083(in Chinese).
    [18]
    MEGALI G, PELLICANO D, CACCIOLA M, et al. EC modelling and enhancement signals in CFRP inspection[J]. Progress in Electromagnetics Research,2010,14:45-60.
    [19]
    PRATAP B, WELDON W. Eddy currents in anisotropic composites applied to pulsed machinery[J]. IEEE Transactions on Magnetics,1996,32(2):437-444. doi: 10.1109/20.486530
    [20]
    XU X, JI H, QIU J, et al. Interlaminar contact resistivity and its influence on eddy currents in carbon fiber reinforced polymer laminates[J]. NDT & E International,2018,94:79-91.
    [21]
    杨光猛, 万小朋, 侯赤. 纤维束波动效应对平纹编织复合材料损伤行为的影响[J]. 复合材料学报, 2020, 37(1):132-139.

    YANG Guangmeng, WAN Xiaopeng, HOU chi. Damage behavior of plain woven composites considering the undulation effect of fiber bundles[J]. Acta Materiae Compositae Sinica,2020,37(1):132-139(in Chinese).
    [22]
    邵兵. 大丝束碳纤维平纹编织复合材料孔边应力细观分析[D]. 南昌: 南昌大学, 2018.

    SHAO Bing. The mesomechanical analysis of stresses near central hole in big carbon tow plain-woven composite[D]. Nanchang: Nanchang University, 2018(in Chinese).
    [23]
    HIVET G, BOISSE P. Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis[J]. Finite Elements in Analysis and Design,2005,42(1):25-49. doi: 10.1016/j.finel.2005.05.001
    [24]
    DUCHENE P, CHAKI S, AYADI A, et al. A review of non-destructive techniques used for mechanical damage assessment in polymer composites[J]. Journal of Materials Science,2018,53(11):7915-7938. doi: 10.1007/s10853-018-2045-6
    [25]
    PENG T, LIU Y, SAXENA A, et al. In-situ fatigue life prognosis for composite laminates based on stiffness degradation[J]. Composite Structures,2015,132:155-165. doi: 10.1016/j.compstruct.2015.05.006
    [26]
    NISHIO Y, TODOROKI A, MIZUTANI Y, et al. Piezoresistive effect of plain-weave CFRP fabric subjected to cyclic loading[J]. Advanced Composite Materials,2017,26(3):229-243. doi: 10.1080/09243046.2016.1239354
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (1197) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return