Volume 38 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
LI Tingting, LI Ruixue, MA Zheng, et al. Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4273-4281. doi: 10.13801/j.cnki.fhclxb.20210310.002
Citation: LI Tingting, LI Ruixue, MA Zheng, et al. Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4273-4281. doi: 10.13801/j.cnki.fhclxb.20210310.002

Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue

doi: 10.13801/j.cnki.fhclxb.20210310.002
  • Received Date: 2020-12-16
  • Accepted Date: 2021-02-22
  • Available Online: 2021-03-10
  • Publish Date: 2021-12-01
  • Double network composite beads (MCC-SA-SEP) were synthesized by a floating droplet method, in which microcrystalline cellulose (MCC) and sodium alginate (SA) worked as the network frameworks, and sepiolite (SEP) was a functional component. The microstructure and thermal properties of the as-prepared MCC-SA-SEP beads were characterized by SEM and TG, respectively, and the adsorption performance for methylene blue (MB) aqueous solution was studied. The results present that the MCC-SA-SEP beads have three-dimensional porous structures, and the thermal stability increases gradually with the increasing of SEP contents. The adsorption process of MCC-SA-SEP follows the pseudo-second-order kinetic model and Langmuir isotherm, with the maximum adsorption capacity of 333.3 mg/g for MB. After five regeneration cycles, the adsorption capacity could still retain 85.4% of the initial adsorption amount, demonstrating a novel organic-inorganic hybrid adsorbent for dye waste water treatment.

     

  • loading
  • [1]
    DAI L, ZHU W, HE L, et al. Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal[J]. Bioresource Technology,2018,267:510-516. doi: 10.1016/j.biortech.2018.07.090
    [2]
    SONG W, GAO B, XU X, et al. Adsorption-desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater[J]. Bioresource Technology,2016,210:123-130. doi: 10.1016/j.biortech.2016.01.078
    [3]
    HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: Possible approaches[J]. Journal of Environmental Management,2016,182:351-366.
    [4]
    GUPTA K C, KUMAR M N V. pH dependent hydrolysis and drug release behavior of chitosan/poly(ethylene glycol) polymer network microspheres[J]. Journal of Materials Science: Materials in Medicine,2001,12(9):753-759. doi: 10.1023/A:1017976014534
    [5]
    PARK S, OH Y, YUN J, et al. Cellulose/biopolymer/Fe3O4 hydrogel microbeads for dye and protein adsorption[J]. Cellulose,2020,27(5):2757-2773. doi: 10.1007/s10570-020-02974-5
    [6]
    曾丹林, 陈诗渊, 张崎, 等. 纤维素制备微球材料的研究进展[J]. 材料导报, 2015, 29(17):68-72.

    ZENG Danlin, CHEN Shiyuan, ZHANG Qi, et al. Research progress of microspheres materials synthesized from cellulose[J]. Materials Reports,2015,29(17):68-72(in Chinese).
    [7]
    ROY D, SEMSARILAR M, GUTHRIE J T, et al. Cellulose modification by polymer grafting: A review[J]. Chemical Society Reviews,2009,38(7):2026-2064.
    [8]
    WAN Y, CHEN X, XIONG G, et al. Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties[J]. Materials Express,2014,4(5):429-434. doi: 10.1166/mex.2014.1188
    [9]
    HU Z H, OMER A M, OUYANG X K, et al. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution[J]. International Journal of Biological Macromolecules,2018,108:149-157. doi: 10.1016/j.ijbiomac.2017.11.171
    [10]
    李延庆, 刘志明, 程小凯, 等. 海藻酸钠/纤维素复合微球的制备及性能表征[J]. 林产化学与工业, 2019, 39(2):67-72.

    LI Yanqing, LIU Zhiming, CHENG Xiaokai, et al. Preparation and performance characterization of sodium alginate/cellulose composite microspheres[J]. Chemistry and Industry of Forest Products,2019,39(2):67-72(in Chinese).
    [11]
    TARTAGLIONE G, TABUANI D, CAMINO G, et al. PP and PBT composites filled with sepiolite: Morphology and thermal behaviour[J]. Composites Science and Technology,2008,68(2):451-460. doi: 10.1016/j.compscitech.2007.06.023
    [12]
    张巍. 海泡石吸附混合污染物和气态污染物的研究进展[J]. 中国矿业, 2019, 28(2):126-132.

    ZHANG Wei. Research progress on sepiolite adsorption of mixed pollutants and gaseous pollutants[J]. China Mining Magazine,2019,28(2):126-132(in Chinese).
    [13]
    杨欣洁. 新型磁性复合有机海泡石对双酚A的吸附试验研究[D]. 长沙: 湖南大学, 2015.

    YANG Xinjie. Adsorption of bisphenol A from aqueous solutions onto new magnetic composite organic sepiolite[D]. Changsha: Hunan University, 2015.
    [14]
    LI Y, XIAO H N, CHEN M D, et al. Absorbents based on maleic anhydride-modified cellulose fibers/diatomite for dye removal[J]. Journal of Materials Science,2014,46(19):6696-6704.
    [15]
    李喜梅. 海藻酸盐纤维的热性能研究[D]. 青岛: 青岛大学, 2018.

    LI Ximei. Study on thermal properties of alginate fiber[D]. Qingdao: Qingdao University, 2018(in Chinese).
    [16]
    宗鲁, 纪全, 谭利文, 等. 纤维素-钙纤维的制备及阻燃性能表征[J]. 高分子材料科学与工程, 2015, 31(2):176-180.

    ZONG Lu, JI Quan, TAN Liwen, et al. Preparation and flame retardant properties of cellulose-Ca fibers[J]. Polymer Materials Science & Engineering,2015,31(2):176-180(in Chinese).
    [17]
    ZHANG Y W, XU L, ZHAO L, et al. Radiation synthesis and Cr(VI) removal of cellulose microsphere adsorbent[J]. Carbohydrate Polymers,2012,88(3):931-938. doi: 10.1016/j.carbpol.2012.01.040
    [18]
    徐春霞, 降帅, 韩阜益, 等. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10):20-25.

    XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue[J]. Journal of Textile Research,2019,40(10):20-25(in Chinese).
    [19]
    LIU L, GAO Z Y, SU X P, et al. Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent[J]. ACS Sustainable Chemistry & Engineering,2015,3(3):432-442.
    [20]
    TANZIFI M, YARAKI M T, KIADENHI A D, et al. Adsorption of amido black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: Experimental investigtion and artificial neural network modeling[J]. Journal of Colloid and Interface Science,2018,510:246-261. doi: 10.1016/j.jcis.2017.09.055
    [21]
    ZHOU Y, LIU X, XIANG Y, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling[J]. Bioresource Technology,2017(245):266-273.
    [22]
    GULAY B, BEGUM A, YAKUP A. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin[J]. Chemical Engineering Journal,2009,1(52):339-346.
    [23]
    JIAO C L, TAO J, XIONG J Q, et al. In situ synthesis of MnO2-loaded biocomposite based on microcrystalline cellulose for Pb2+ removal from wastewater[J]. Cellulose,2017,24(6):2591-2604. doi: 10.1007/s10570-017-1271-4
    [24]
    TAO J, XIONG J Q, JIAO C L, et al. Hybrid mesoporous silica based on hyperbranch-substrate nanonetwork as highly efficient adsorbent for water treatment[J]. ACS Sustainable Chemistry& Engineering,2016,4(1):60-68.
    [25]
    XU D, TAN X, CHEN C, et al. Removal of Pb(Ⅱ) from aqueous solution by oxidized multiwalled carbon nano-tubes[J]. Journal of Hazardous Materials,2008,154:407-416. doi: 10.1016/j.jhazmat.2007.10.059
    [26]
    吴鹏, 刘志明. 海藻酸钠/纤维素水凝胶球的制备与应用[J]. 功能材料, 2015, 46(10):10144-10147, 10152.

    WU Peng, LIU Zhiming. Preparation and application of sodium alginate/cellulose hydrogel beads[J]. Journal of Functional Materials,2015,46(10):10144-10147, 10152(in Chinese).
    [27]
    王佳楠, 羿颖, 边勇军, 等. 纤维素/硅藻土复合气凝胶球的制备及其吸附性能的研究[J]. 纤维素科学与技术, 2019, 27(1):49-56.

    WANG Jianan, YI Ying, BIAN Yongjun, et al. Preparation of cellulose/diatomite composite aerogel beads and its adsorption performance[J]. Journal of Cellulose Science and Technology,2019,27(1):49-56(in Chinese).
    [28]
    ALLOUSS D, ESSAMLALI Y, AMADINE O, et al. Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: Adsorption kinetics, isotherm, thermodynamics and reusability studies[J]. RSC Advances,2019,9(65):37858-37869. doi: 10.1039/C9RA06450H
    [29]
    MOHAMMED N, GRISHKEWICH N, WAEIJEN H A, et al. Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads infixed bed columns[J]. Carbohydrate Polymers,2016,136:1194-1202. doi: 10.1016/j.carbpol.2015.09.099
    [30]
    DIAO H L, ZHANG Z J, LIU Y X, et al. Facile fabrication of carboxylated cellulose nanocrystal-MnO(2)beads for high-efficiency removal of methylene blue[J]. Cellulose,2020,27(12):7053-7066. doi: 10.1007/s10570-020-03260-0
    [31]
    KUMAR K V, KUMARAN A. Removal of methylene blue by mango seed kernel powder[J]. Biochemical Engineering Journal,2005,27(1):83-93. doi: 10.1016/j.bej.2005.08.004
    [32]
    KUBILAY S, GÜRKAN R, SAVRAN A, et al. Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite[J]. Adsorption,2007,13(1):41-51. doi: 10.1007/s10450-007-9003-y
    [33]
    STANCIU M C, NICHIFOR M. Adsorption of anionic dyes on a cationic amphiphilic dextran hydrogel: Equilibrium, kinetic, and thermodynamic studies[J]. Colloid and Polymer Science,2019,297(1):45-57. doi: 10.1007/s00396-018-4439-z
    [34]
    JIANG Y F, SUN H, YVES U J, et al. Impact of biochar produced from post-harvest residue on the adsorption behavior of diesel oil on loess soil[J]. Environmental Geochemistry and Health,2016,38(1):243-253. doi: 10.1007/s10653-015-9712-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (1535) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return